You are here

Research

The CSULB College of Engineering's Centers, Institute, and Labs provide the cutting-edge equipment and facilities to advance knowledge and understanding in many fields of engineering researchfrom manufacturing and aerospace to energy, transportation, and assistive technology. Whether it be studying the properties of new metals and compsites or evaluating new manufacturing processes, the work conducted advances the field and provides opportunities for student and faculty research. Many of the labs and centers are supported by industry partners such as Boeing and DENSO.

 

Center for Energy and Environment Research and Services (CEERS)

Director: Hamid Rahai

CEERS LogoThe Center for Energy and Environmental Research and Services (CEERS) was established in 2003 to conduct interdisciplinary research and development, technology transfer, and education in energy and environmental systems, environmental health, water resources, air pollution and groundwater contamination, and environmental impacts of transportation. The center's advisory board includes representatives from Southern California utility, aerospace, and transportation companies; the ports of Los Angeles and Long Beach; and Long Beach Unified School District. Recent projects include patented innovations in vertical-axis wind turbine performance, mitigation of diesel and compressed natural gas emissions, modeling virus transport on public transportation systems, CFD analyses of particulate matter (PM) deposits in human lungs, and transient transport and diffusion of PM near roads and freeways. 

Institute for Manufacturing and Automation Technologies (IMAT)

Directors: Bob Minaie or Parviz Yavari

Established in 2014, I-MAT conducts research and development in partnership with industry and state and federal agencies. I-MAT focuses on person-centered design and human system integration, aerospace manufacturing and assembly, rapid prototyping and integration, composite manufacturing, nanofabrication, and systems engineering. The institute provides opportunities for faculty and students to engage in multi-investigator and interdisciplinary R&D. I-MAT's advisory board includes members from Boeing, Northrop Grumman, Raytheon, and automotive design and manufacturing companies.

Analytical Instrumentation Lab (ECS-110)

Contact: Roger Lo

The Analytical Instrumentation Lab is dedicated to material characterization and development of new instruments for biological and chemical analysis. 

Major Equipment:

  • Nicolet FT-IR Spectrophotometer
  • Shimadzu UV-Vis Spectrophotometer
  • SRI Gas Chromatograph with FID Detector
  • Keithley 2401 SourceMeter
  • Zeiss Microscope with Hamamatsu CCD Camera
  • Paraytec UV Area Imager

Assistive Technology Lab (ECS-212)

Intelligent habitatThis intelligent habitat provides a testbed for student and faculty researchers working on projects to help the disabled live unassisted. The mini-apartment contains a kitchen, bedroom, and bath where tools and applications can be tested..

Boeing Low-speed Wind Tunnel Lab (ECS-104)

Contact: Hamid Rahai

This low-speed, closed-circuit tunnel was donated by Boeing in 1993. The tunnel has a 96.5 X 137 X 305 cm working area, and a 10:1 contraction with a maximum free-stream speed of 90 m/sec. The settling chamber features a honeycomb and six screens for flow conditioning. For speeds less than 50 m/sec, the free-stream turbulence is less than 0.02 percent and the non-uniformity in the flow across the test section is less than 0.1 percent per 5 cm.

Instrumentation available in the tunnel consists of five channels of TSI IFA 100 intelligent flow analyzer with signal conditioner, one channel of TSI model 1050 constant temperature anemometer, a TSI signal conditioner model 1015C, a four channel B&K analog tape recorder which has a maximum frequency response of 15 KHz and a two channels Scientific Atlanta Spectroscope III model SD 345 spectrum analyzer. Also in place are a fast-response Setra Systems manometers and associated Pitot tubes for accurate measurement of mean pressure and velocity and a Newport temperature bridge model 267B and RTD probes for mean temperature measurements.

The tunnel also has a Laser Doppler Velocimetry (LDV) System, a single component, off-axis, forward scatter collection. The clear collection aperture is 40 mm and the transmitter focal length is 300 mm. Fringe separation is 6 microns. The laser used is a Lexel Argon-Ion model 85 with maximum power output of 1 watt. It has photomultiplier and associated signal conditioning electronics and frequency domain single-component signal processor with a PC driver software.

Composite Materials Manufacturing Lab (VEC-124)

Contact: Yash Singh

AutoclaveThis lab contains a sizeable autoclave that can be used for curing the composites that researchers design, cut, stitch, and fabricate. The 5-foot by 3-foot autoclave can accommodate large objects and heat to 800 degrees Fahrenheit and 415 psi.

DENSO Design & Manufacturing Lab (ET-15)

Contact: Christiane Beyer or Mahdi Yoozbashizadeh 

DENSO LabThe DENSO Lab offers CSULB students facilities for computer-aided design, manufacturing, and non-destructive testing. The lab contains an assembly robot, a Computer Numerical Control (CNC) milling machine with the ability to machine parts precisely, and 3D printers to rapidly prototype three-dimensional solid objects of virtually any shape from a digital model. Stored nearby is a plasma cutter used to precisely cut steel and other metal materials of different thicknesses.

Dynamics and Control Lab (ECS-215)

Schedule: M-F: 9 a.m.-4 p.m.

Contact: Qingbin Gao

The Dynamics and Control Lab focuses on:

  • Automation
  • Robotics
  • Manufacturing
  • Time-delay systems, and
  • Other technologies.

Major equipment:

  • Cart-inverted-pendulum setup
  • Parallel robot
  • Cart-seesaw setup
  • Robotic arms
  • Rotary-inverted pendulum. 

Fluid Dynamics Lab (VEC-134)

Contact: Hamid Rahai and Shahab Taherian

This lab is equipped for aerodynamics, bio-fluids, and computational fluid dynamics (CFD) research.

Highway and Structures Materials Lab (VEC-128)

Contact: Shadi Saadeh

Human Performance & Robotics Lab (ECS-115)

Contact: Emel Demircan

The Human Performance and Robotics Lab's research projects range from musculoskeletal modeling to robotic control. HPRL has received grants from DENSO, the National Science Foundation, and the National Institutes of Health and collaborates with various departments and institutions to engage in interdisciplinary research. 

Impact Group Engineering Research Lab (ECS-108)

Hours: M-F 9 a.m.-5 p.m. and by appointment

Contact: Daniel Whisler

The Impact Group Engineering Research Lab specializes in understanding dynamic material and structural behavior when subject to extreme environments such as shock, impacts, or blast loads. Experimental and numerical testing for high strain, high strain rate survivability, blast mitigation, and impact resistance.

Major equipment:

  • High-strain compressed gas impactor
  • Low-strain pendulum impactor
  • Drop tower
  • High speed camera

Instron Testing Lab (EN4-130)

Contact: Yash Singh

Instron testing framesThis large-scale testing facility provides equipment for static, fatigue, and creep tests. The lab, which has supported NASA and Boeing research programs, contains 11 Instron servo-hydraulic testing frames (ranging from 22- to 110-kip capacity) with computer-controlled thermal chambers capable of temperatures from -80 to 700 degrees Fahrenheit. The Instron Lab also has humidity and thermocycling chambers.

Marine Construction Lab (EN3-132)

Currently under construction, this lab will provide students and faculty a facility to explore this growing construction specialty.

Microfabrication Lab (ECS-214)

Contact: Roger Lo

Clean RoomThe Microfabrication Lab is dedicated to photolithographic processes and 3D printing for developing and fabricating microfluidic chips that find various applications at the interface of biology, chemistry, and engineering.

Major Equipment:

  • Class 10,000 Cleanroom
  • WS-400Bz-NPP-Lite Spincoater
  • Dyne-A-Mite Surface Treater
  • CTC 3D Printer
  • MiiCraft 3D Printer
  • 3D Potterbot 2.5 3D Printer

Multiscale Mechanics of Materials Lab (VEC-121)

Hours: M-F 9 a.m.-6 p.m.

Faculty advisor: Yan Li

The lab focuses on:

  • Multiscale/multiphysics modeling
  • Integrated computational/experimental approaches for next generation material design
  • Application of material science and solid mechanics in advanced manufacturing.

Polymer & Advanced Composite Lab (ET-24)

Hours:  M-F: 9 a.m.-6 p.m.(by appointment)

Contact: Ehsan Barjasteh

The Polymer and Advanced Composite Laboratory specializes in developing and characterizing new lightweight materials and processes for applications in aerospace, biomedical, automotive, and other related industries. In particular, the research lab focuses on:

  • Out-of-Autoclave processes (VBO, VaRTM, RTM, RFI)
  • Automated polymer and composite manufacturing
  • Nanomaterial  
  • Multifunctional materials

This research lab contains state-of-the-art advanced manufacturing equipment for:

  • Resin transfer molding
  • Injection molding
  • Hot press
  • Differential scanning calorimeter
  • Dynamical mechanical analyzer
  • Rheometer