Low energy availability (LEA) can detrimentally affect an athlete’s metabolic rate, bone health, and the reproductive health of female athletes. Screening tools to identify athletes at risk for LEA are needed. However, dietary recall methods such as the RD-administered 24-hour recall are burdensome for both registered dietitians and athletes.

The purpose of this study is to evaluate the concurrent validity of a web-based nutrition screening survey (NSS) to facilitate the efficient evaluation of food intake and nutritional risk, at a registered dietitian-administered 24-hour recall among male and female collegiate endurance runners.

Participants attended a meeting with their sports dietitian, at which point an initial RD-administered 24-hour recall was collected. After a washout period of two weeks, athletes were prompted to complete the NSS. Correlations and means tests were used to compare energy and macronutrient intakes.

A total of 46 collegiate endurance runners were included in the final analysis. Based on the correlation analysis, the NSS and RD-administered recall displayed significant association for energy (r = .565, p < .001), fat (r = .535, p < .001), and protein intake (r = .414, p < .01), when outliers were excluded. There were no significant differences in average intake, for each nutrient assessed, between recall methods, indicating agreement at the group level.

Bland-Altman Plot Analysis displayed proportional bias in energy intake between recall methods. This study suggests agreement between NSS and the RD-administered 24-hour recall, particularly for group data.

Methods

The dietitians from both athletic institutions used a standardized assessment worksheet and 24-hour recall to assess nutritional status and nutrition-related risks. Eating patterns and individual nutritional goals were also discussed. Nutrient composition of each 24-hour recall was calculated using the ESHA Food Processor and USDA Diabetic Exchanges.

Within two weeks of the initial assessment completed by an RD, the student-athletes were prompted to complete the novel web-based nutrition screening survey. The online intake survey consisted of 47 items intended to catalogue each athlete's consumption in the previous month. The ESHA Food Processor and USDA Nutrient Database were used to calculate nutrient composition of recorded intakes. There were also questions regarding food intake patterns and the survey also recorded any athlete-reported dietary restrictions, like meat, dairy, and gluten formulas. Formulas were developed to calculate typical dietary intake based on the participant-reported frequency of consumption of each item, ultimately summarizing each runners’ mean daily dietary intake. The survey also assessed typical regimen of athletic training, body weight, and body composition over the previous four weeks, and an estimation of exercise expenditure calculated using the American College of Sports Medicine Compendium of Physical Activities.

Discussion & Conclusions

Compared with the 24-hour recall, the NSS displayed moderate agreement between energy and fat intake, weak agreement between protein intakes, and a negligible and non-significant relationship between carbohydrate intakes when outliers were excluded. The initial lack of relationships between recall methods and nutritional intake is likely related to the high degree of variance in dietary intakes and indicates that the NSS is sensitive to extreme values.

There were no significant differences between mean energy in calories, grams of carbohydrate, grams of protein, or grams of fat intake between NSS and RD-administered 24-hour recall when paired t-tests were conducted both including and excluding outliers.

Sports RDs could use the NSS to identify groups, if not at-risk, at higher risk for LEA and effectively intervene with appropriate education and follow up counselling to provide accurate sports nutrition information, evidence-based nutrition advice, and improve dietary choices.

Acknowledgements

I would like to thank Dr. Barrack, Dr. Arruda, and Dr. Gray for their patience, graciousness, and guidance throughout the process of writing this thesis. I would also like to thank my mom and dad for the same reasons, and for everything I have in this life.

References

For more information please contact Caroline Olson at OlsonC@indiana.edu.