CSULB College of Engineering

Laser Safety Program
Table of Contents

1.0 PURPOSE .. 4
2.0 SCOPE.. 4
3.0 ACRONYMS AND DEFINITIONS .. 4
3.1 Acronyms and Abbreviations Used in this Standard .. 4
3.2 Definitions .. 5
4.0 RESPONSIBILITIES ... 14
4.1 COE Administration ... 14
4.2 Laboratory Principal Investigators (PI) or Laboratory Supervisors who use Lasers 14
4.3 Student and Staff Using Lasers ... 15
4.4 Service Personnel Working in LCA .. 15
4.5 Laser Safety Officer (LSO) ... 15
5.0 LASER INFORMATION ... 16
5.1 Hazards ... 16
5.2 Laser Classification System .. 16
6.0 LASER SAFETY .. 17
6.1 Administrative Controls for Laser Safety .. 17
6.2 Engineering Controls ... 20
6.3 Personal Protective Equipment (PPE) ... 29
6.4 Warning Signs .. 30
6.5 Non-Beam Hazards ... 31
7.0 TRAINING .. 31
7.1 Laser Safety Training ... 31
7.2 LSO Training ... 32
8.0 LASER INCIDENTS ... 32
8.1 Laser Incidents or Near Miss Incidents .. 32
8.2 Examination Following a Suspected or Actual Laser Induced Injury .. 33
9.0 LSP CHANGE LOG .. 34
10. APPENDIX ... 35
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Standard Operating Procedure Template</td>
<td>35</td>
</tr>
<tr>
<td>10.2</td>
<td>COE Laser Safety Training Record</td>
<td>38</td>
</tr>
<tr>
<td>10.3</td>
<td>Laser Use Authorization (LUA)</td>
<td>40</td>
</tr>
</tbody>
</table>
1.0 PURPOSE

The purpose of the College of Engineering (COE) Laser Safety Program (LSP) is to ensure that lasers are used in a manner that will protect the health and safety of COE students, faculty, and staff; eliminate danger to life and property; and comply with relevant State and Federal regulations. The LSP is based upon guidelines in ANSI Z136.1-2014, the American National Standard for Safe Use of Lasers. This standard covers the safe use of lasers operating between wavelengths of 180 nm and 1000 µm.

This LSP is based on the following components:

- Designation of a Laser Safety Officer (LSO) to manage the program
- Training of authorized personnel (LSO, operators, service personnel, and others)
- Application of adequate control measures for the mitigation of laser hazards
- Incident investigations of actual and near-misses
- Medical examinations when required
- Laser Safety Committee

2.0 SCOPE

The LSP applies to all COE faculty, staff, and students who utilize lasers in the course of their job function, project research, or student studies. The LSP will be overseen by a designated Laser Safety Officer (LSO). A COE Laser Safety Committee (LSC) has been established to ensure that the required safety measures are implemented and maintained in the most democratic and intelligent manner.

3.0 ACRONYMS AND DEFINITIONS

3.1 Acronyms and Abbreviations Used in this Standard

- AEL - accessible emission limit
- ANSI - American National Standards Institute
- ASC - accredited standards committee
- CDRH - Center for Devices and Radiological Health (USA)
- CFR - Code of Federal Regulations
- CPR - cardiopulmonary resuscitation
- CW - continuous wave
- FDA - Food and Drug Administration
- FLPPS - Federal Laser Product Performance Standard Hz-hertz
- IEC - International Electrotechnical Commission
- IEEE - Institute of Electrical and Electronics Engineers
- IR - infrared
- J - joules
- Laser - light amplification by stimulated emission of radiation
- LCA - laser controlled area
- LEP - laser eye protection
- LGAC - laser generated air contaminants
3.2 Definitions

Absorption: Transformation of radiant energy to a different form of energy by interaction with matter.

Accessible emission limit (AEL): The maximum accessible emission level permitted within a laser hazard class.

Accessible laser radiation: Laser radiation emitted from a laser that is compared with the AEL to determine its hazard class. Includes accessible radiant energy and power. See also: effective energy; effective power.

Administrative control measure: Control measures incorporating administrative means [e.g., training, safety approvals, LSO designation, and standard operating procedures (SOP)] to mitigate the potential hazards associated with laser use.

Alpha max: The angular subtense of an extended source beyond which additional subtense does not contribute to the hazard and need not be considered. Symbol: <Xmax.

Alpha min: The angular subtense of a source below which the source can be effectively considered as a point source. Alpha min has a value of 1.5 mrad. Symbol: Ilmin.
Aperture: An opening, window, or lens through which optical radiation can pass. The aperture limits the energy or power for measurement or exposure.

Apparent visual angle: The angular subtense of the source as calculated from source size and distance from the eye. It is not the beam divergence of the source. Symbol: a.

Attenuation: The decrease in the radiant flux as it passes through an absorbing and/or scattering medium.

Authorized personnel: Individuals approved by management to operate, maintain, service, or install laser equipment.

Average power: The total energy in an exposure or emission divided by the duration of that exposure or emission. Symbol: /J.

Aversion response: Closure of the eyelid, eye movement, pupillary constriction, or movement of the head to avoid an exposure to a noxious or bright light stimulant. In this standard, the aversion response to an exposure from a bright, visible, laser source is assumed to limit the exposure of a specific retinal area to 0.25 s or less.

Beam: A collection of light/photonic rays characterized by direction, diameter (or dimensions), and divergence (or convergence).

Beam diameter: The distance between diametrically opposed points in that cross-section of a beam where the power or energy is 1/e (0.368) times that of the peak power or energy.

Beam divergence: For purposes of this standard, divergence is the increase in the diameter of the laser beam with distance from the beam waist, based on the full angle at the point where the irradiance (or radiant exposure for pulsed lasers) is 1/e times the maximum value. Symbol: c.

Carcinogen: An agent potentially capable of causing cancer.

Coagulation: The process of congealing by an increase in viscosity characterized by a condensation of material from a liquid to a gelatinous or solid state.

Collateral radiation: Any electromagnetic radiation, except laser radiation, emitted by a laser system. This does not include laser target interaction radiation (reradiation). Note that reradiation from a target is addressed in this standard as a non-beam hazard.

Collecting optics: Lenses or optical instruments having magnification and thereby producing an increase in energy or power density. Such devices may include telescopes, binoculars, microscopes, or loupes.

Collimated beam: Effectively, a "parallel" beam of light with very low divergence or convergence.
Conduit: A pipe or hollow cable through which laser energy passes.

Continuous wave (CW): In this standard, a laser operating with or modeled as having a continuous output for a period 2: 0.25 s is regarded as a CW laser.

Control measure: A means to mitigate potential hazards associated with the use of lasers. Control measures can be divided into three groups: engineering, procedural (administrative), and personal protective equipment (PPB).

Controlled area: An area where the occupancy and activity of those within is subject to control and supervision. See also: laser-controlled area.

Cornea: Transparent outer layer of the human eye that covers the iris and the crystalline lens. The cornea is the main refracting element of the eye.

Diffuse reflection: Change of the spatial distribution of a beam of radiation when it is reflected in many directions by a surface or by a medium.

Embedded laser: An enclosed laser that has a higher classification than the laser system in which it is incorporated, where the system's lower classification is appropriate due to the engineering features limiting accessible emission.

Enclosed laser: A laser that is contained within a protective housing of itself or of the laser or laser system in which it is incorporated. Opening or removal of the protective housing provides additional access to laser radiation above the applicable MPE than possible with the protective housing in place.

Energy: The capacity for doing work. Energy content is commonly used to characterize the output from pulsed lasers, generally expressed in joules (J). Symbol: Q

Engineering control measure: Control measures designed or incorporated into the laser or laser system (e.g., interlocks, shutters, watch-dog timer) or its application.

Epithelium (of the cornea): The layer of cells forming the outer surface of the cornea.

Erythema: For the purposes of this standard, redness of the skin due to exposure from laser radiation.

Extended source: A source of optical radiation with an angular subtense at the cornea larger than in eye-safe laser. Class 1 laser product. Because of the frequent misuse of the term eye-safe wavelength to mean retina-safe, (e.g., 1500 nm to 1800 nm) and eye-safe laser to refer to a laser emitting at wavelengths outside the retinal-hazard region, the term eye-safe can be a misnomer. Hence, the use of eye-safe laser is discouraged.

Fail-safe interlock: An interlock where the failure of a single mechanical or electrical component of the interlock will cause the system to go into, or remain in, a safe mode.
Field of view: The full solid angle from which a detector’s active area receives radiation.

Focal length: The distance from the secondary nodal point of a lens to the secondary focal point. For a thin lens imaging a distant source, the focal length is the distance between the lens and the focal point.

Focal point: The point toward which radiation converges or from which radiation diverges or appears to diverge.

Hertz (Hz): The unit that expresses the frequency of a periodic oscillation in cycles per second. The term also describes the number of repetitive pulses occurring per second.

Hot spot: Term applied to a laser beam to denote areas within the beam, not necessarily centered in the beam, that are above the average irradiance.

Illuminance: The luminous flux per unit area incident upon a surface. The basic units of illuminance is lumens·m⁻² (lux). Some instruments that measure illuminance are calibrated in foot-candles (lumens·ft⁻²).

Infrared (IR): For purposes of this standard, the region of the electromagnetic spectrum between the long-wavelength extreme of the visible spectrum (700 nm) and the shortest microwaves (1000 µm).

Installation: Placement and connection of laser equipment to enable intended operation.

Integrated radiance: The integral of the radiance over the exposure duration, expressed in joules-per-centimeter-squared per-steradian (J.cm⁻² sf⁻¹).

Intrabeam viewing: The viewing condition whereby the eye is exposed to all or part of a laser beam.

Iris: The annular pigmented structure that lies behind the cornea of the human eye. The central opening is the pupil.

Irradiance: Radiant power incident per unit area upon a surface, expressed in watts-per-centimeter-squared (W·cm⁻²). Symbol: E.

Joule (J): A unit of energy. 1 joule = 1 watt·second (W·s).

Laser: A device that produces radiant energy predominantly by stimulated emission. Laser radiation may be highly coherent temporally, or spatially, or both. An acronym for Light Amplification by Stimulated Emission of Radiation.

Laser barrier: A device used to block or attenuate incident direct or diffuse laser radiation. Laser barriers are frequently used during times of service to the laser system when it is desirable to establish a boundary for a controlled laser area.
Laser classification: An indication of the beam hazard level of a laser or laser system during normal operation, or the determination thereof. The hazard level of a laser or laser system is represented by a number or a numbered capital letter. The laser classifications are Class 1, Class IM, Class 2, Class 2M, Class 3R, Class 3B and Class 4.

Laser-controlled area (LCA): A laser use area where the occupancy and activity of those within is controlled and supervised. This area may be defined by walls, barriers, or other means. Within this area, potentially hazardous beam exposure is possible.

Laser diode: A laser employing a forward-biased semiconductor junction as the active medium.

Laser personnel: Persons who routinely work around hazardous laser beams.

Laser pointer: A laser or laser system designed or used to specify a discrete point or location, such as those lasers used in classroom lectures or for the aiming of firearms. These products are usually Class 1, Class 2, or Class 3R.

Laser product: Any manufactured product or assemblage of components that constitutes, incorporates, or is intended to incorporate a laser or laser system. A laser or laser system intended for use as a component of an electronic product is itself considered a laser product.

Laser safety officer (LSO): One who has authority and responsibility to monitor and enforce the control of laser hazards and effect the knowledgeable evaluation and control of laser hazards.

Laser system: An assembly of electrical, mechanical, and optical components that includes a laser.

Laser target interaction radiation (LTIR): Non-laser radiation, including ionizing radiation, emitted by a material as a result of that material’s exposure to laser radiation.

Lesion: A change in the structure of an organ or part due to injury or disease.

Macula: The small uniquely pigmented specialized area of the retina of the eye, which in normal individuals, is predominantly employed for acute central vision (i.e., area of best visual acuity).

Magnified viewing: Viewing an object through an optical system that increases the apparent object size. This type of optical system can make a diverging laser beam more hazardous, (e.g., using a magnifying optic to view the end of an energized optical fiber). See also: collecting optics.

Maintenance: Performance of those adjustments or procedures (specified in the user information provided by the manufacturer, and considered preventative, to maintain optimal performance of the laser system), which are to be carried out by the user to ensure the intended performance of the product. Maintenance does not include operation or service as defined in this section.
Maximum permissible exposure (MPE): The level of laser radiation to which an unprotected person may be exposed without adverse biological changes in the eye or skin.

Measurement aperture: The aperture used for classification of a laser to determine the effective power or energy that is compared with the AEL for each laser hazard class.

Nominal hazard zone (NHZ): The space within which the level of the direct, reflected, or scattered radiation may exceed the applicable MPE. Exposure levels beyond the boundary of the NHZ are below the applicable MPE.

Nominal ocular hazard distance (NOHD): The distance along the axis of the unobstructed beam from a laser, fiber end, or connector to the human eye beyond which the irradiance or radiant exposure does not exceed the applicable MPE.

Non-beam hazards (NBH): All hazards arising from the presence of a laser system, excluding direct human exposure to direct or scattered laser radiation.

Non-laser radiation (NLR): All radiation arising from the operation of a laser system, excluding laser radiation. This includes collateral radiation and laser target interaction radiation.

Ocular fundus: The interior posterior surface of the eye (the retina) as seen during ophthalmoscopic examination.

Operation: The performance of the laser or laser system over the full range of its intended functions (normal operation). Operation does not include maintenance or service as defined in this section.

Ophthalmoscope: An instrument for examining the interior of the eye.

Optically aided viewing: Viewing with a telescopic (binocular) or magnifying optic. Under certain circumstances, viewing with an optical aid can increase the hazard from a laser beam. See also: telescopic viewing; magnified viewing.

Optical density (OD): The logarithm to the base ten of the reciprocal of the transmittance at a particular wavelength.

Personal protective equipment (PPE): Personal safety protective devices used to mitigate hazards associated with laser use [e.g., laser eye protection (LEP), protective clothing, and gloves].

Photochemical effect: A biological effect produced by a chemical change in molecules resulting from the absorption of photons. The changed molecules fail to function as before.

Photosensitizers: Substances that increase the biological response of a person to exposure by optical radiation.

Plasma radiation: Laser target interaction radiation (LTIR) generated by a plasma.
Point source: For purposes of this standard, a source with an angular subtense at the cornea equal to or less than alpha-min (llmin), i.e., 1.5 mrad.

Power (P): The rate at which energy is emitted, transferred, or received. Unit: watt (W) ($1 \text{ W} = 1 \text{ J/s}$).

Procedural control measure: See: administrative control measure.

Protective housing: An enclosure that surrounds the laser or laser system and prevents access to laser radiation above the applicable MPE. The aperture through which the useful beam is emitted is not part of the protective housing. The protective housing limits access to other associated radiant energy emissions and to electrical hazards associated with components and terminals. May enclose associated optics and a workstation.

Pulse duration: The duration of a laser pulse, usually measured as the time interval between the half-power points on the leading and trailing edges of the pulse. Symbol: t

Pulse-repetition frequency (PRF): The number of pulses occurring per second, expressed in hertz. Symbol: F

Pulsed laser: A laser that delivers its energy in the form of a single pulse or a train of pulses. For purposes of this standard, the duration of a pulse is less than 0.25 s.

Pupil: The variable aperture in the iris through which light travels to the interior of the eye.

Q-switch: A device for producing very short (-10-250 ns) intense laser pulses by enhancing the storage and dumping of electronic energy in and out of the lasing medium, respectively.

Q-switched laser: A laser that emits short (-10-250 ns), high-power pulses by means of a Q-switch.

Radian (rad): A unit of angular measure equal to the angle subtended at the center of a circle by an arc whose length is equal to the radius of the circle. $1 \text{ radian} = 57.3 \text{ degrees}$; $2\pi \text{ radians} = 360 \text{ degrees}$.

Radiance: Radiant flux or power output per unit solid angle per unit area expressed in watts-per-centimeter squared per-steradian (W-cm⁻² sf⁻¹). Symbol: L.

Radiant energy: Energy emitted, transferred, or received in the form of radiation. Unit: joules (J). Symbol: Q.

Radiant exposure: Surface density of the radiant energy received, expressed in units of J-cm⁻². Symbol: H.

Radiant flux: Power emitted, transferred, or received in the form of radiation. Unit: watts (W). Syn: radiant power. Symbol: ϕ.

Radiant power: Power emitted, transferred, or received in the form of radiation, expressed in watts (W). Syn: radiant flux.

Radiometry: For the purposes of this standard, the measurement of infrared, visible, and ultraviolet radiation.

Reflection: Deviation of radiation following incidence on a surface.

Refraction: The bending of a beam of light in transmission through an interface between two dissimilar media or in a medium whose refractive index is a continuous function of position (graded index medium).

Repetitive pulse laser: A laser with multiple pulses of radiant energy occurring in a sequence.

Retina: The sensory tissue that receives the incident image formed by the cornea and lens of the human eye.

Retinal hazard region: Optical radiation with wavelengths between 400 nm and 1400 nm, where the principal hazard is usually to the retina.

Safety latch: A device designed to require a conscious decision to override in order to gain entry into a controlled area.

Saturable absorption: The property of laser eye protection and other optical materials where the absorption of light decreases (OD decreases) with increasing irradiance. This has been shown to occur with certain laser eye protection materials with high-energy nanosecond and shorter duration pulses.

Scanning laser: A laser having a time-varying direction, origin, or pattern of propagation with respect to a stationary frame of reference.

Secured enclosure: An enclosure to which casual access is impeded by an appropriate means (e.g., a door secured by a magnetically or electrically operated lock or latch, or by fasteners that need a tool to remove).

Service: The performance of procedures, typically defined as repair, to bring the laser or laser system or laser product back to full and normal operational status. Service does not include operation or maintenance as defined in this section.

Shall: The word shall is to be understood as mandatory.

Should: The word should is to be understood as advisory.
Solid angle: The three-dimensional angular spread at the vertex of a cone measured by the area intercepted by the cone on a unit sphere whose center is the vertex of the cone. Unit: steradians (sr).

Source: A laser or a laser-illuminated reflecting surface.

Spectator: An individual who wishes to observe or watch a laser or laser system in operation, and who may lack the appropriate laser safety training.

Specular reflection: A mirror-like reflection.

Steradian (sr): The unit of measure for a solid angle. There are 4π steradians about any point in space.

Standard operating procedure (SOP): Formal written description of the safety and administrative procedures to be followed in performing a specific task.

Telescopic viewing: Viewing an object from a long distance with the aid of an optical system that increases the visual size of the image. The system (e.g., binoculars), generally collects light through a large aperture, thus magnifying hazards from large-beam, collimated lasers.

Thermal effect: For purposes of this standard, an effect brought about by the temperature elevation of a substance due to absorption of laser energy.

Threshold limit (TL): The term is applied to laser protective eyewear filters, protective windows, and barriers. The TL is an expression of the "resistance factor" for a beam.

Penetration of a laser protective device: This is generally related by the Threshold Limit (TL) of the protective device, expressed in W-cm-2 or J.cm-2. It is the maximum average irradiance or radiant exposure at a given beam diameter for which a laser protective device provides adequate beam resistance. Thus, laser exposures delivered on the protective device at or below the TL will limit beam penetration to levels at or below the applicable MPE.

Tmax: The total expected or anticipated exposure duration, which may differ depending upon its use.

Tmin: The shortest exposure duration greater than 1 ns for which the MPE, expressed as radiant exposure (J-cm^2), decreases as the exposure duration decreases, reflecting a thermal damage mechanism. Tmin is an analogue for the "thermal confinement time" for biological effects, a duration for which there is no significant flow of heat from the volume of tissue in which the energy was absorbed, and therefore no cooling of the absorbing tissue during the exposure.

Transmission: Passage of radiation through a medium.

Transmittance: The ratio of transmitted power (energy) to incident power (energy). Symbol: i:
Ultraviolet radiation (UV): Electromagnetic radiation with wavelengths between 180 nm and 400nm.

Uncontrolled area: An area where the occupancy and activity of those within is not subject to control and supervision for the purpose of protection from radiation hazards.

Viewing window: A visually transparent part of an enclosure that contains a laser process. It may be possible to observe the laser processes through the viewing windows.

Visible radiation (light): The term is used to describe electromagnetic radiation that can be detected by the human eye. For purposes of this standard, this term is used to describe wavelengths that lie in the range 400 nm to 700 nm. Derivative standards may legitimately use 380 nm to 780 nm for the visible radiation range.

Wavelength: The distance in the line of advance of a sinusoidal wave from any one point to the next point of corresponding phase (e.g., the distance from one peak to the next).

4.0 RESPONSIBILITIES
The following responsibilities exist under this LSP.

4.1 COE Administration
- COE Chairs are responsible for ensuring that Principal Investigators follow the elements outlined in this LSP and that safety standards and information are available to control the potential impacts of higher energy lasers (Class 3b and Class 4).
- Must designate LSO for COE.

4.2 Laboratory Principal Investigators (PI) or Laboratory Supervisors who use Lasers
- Ensure that a Laser Use Application (LUA) is approved by the COE LSC prior to submission of purchase requisition for laser.
- Define the Laser Controlled Areas in conjunction with COE LSO.
- Work with LSO to develop a Laser Standard Operating Procedure that is laser and area specific.
- Prior to using a laser, ensure all laser users receive adequate and appropriate laser safety and operational training. This must include section 7.1 LASER SAFETY TRAINING.
- Ensure that non-participating lab personnel working in the laser laboratory receive awareness training and can recognize the nominal hazard zone, and warnings.
- Ensure all appropriate safety procedures are followed, that any laser safety devices (interlocks etc.) are functioning properly, and that the correctly rated goggles are available and used as appropriate.
- Ensure that properly rated goggles are worn whenever the beam is on and there is the potential for beam exposure.
- Supervise or provide adequate supervision of users, visitors, and service personnel.
• Provide adequate security to prevent unauthorized use.
• Correct and control all laser equipment and laser hazards.
• Ensure the LUA is posted on the inside of the main entrance door to the lab.

4.3 Student and Staff Using Lasers
• Be authorized and appropriately trained by PI prior to operating a potentially hazardous laser, or entering the LCA.
• Follow all appropriate rules and procedures defined in the SOP and training documents,
• Immediately report accidents or potentially dangerous situations to the PI, LSO, or EH&S.
• Students (graduate and undergraduate) may never work alone in the laboratory outside of normal work hours. COE requires a minimum of two people in a lab when working after hours to ensure help can be called if one person has a medical emergency.
• Are responsible for medical treatment costs if injured in a class or lab.

4.4 Service Personnel Working in LCA
• Obtain permission from PI or LSO prior to starting work. Provide a two-week notice before service. If flashing light on door is on, then knock and wait for lab personnel to open door.
• For Class 3B and 4 lasers, lock out power to laser system.
• Obtain laser safety training from LSO.
• Follow established laser safety protocols, procedures, and warning signs.

4.5 Laser Safety Officer (LSO)
• Review and approve submitted LUA.
• Develop SOPs in conjunction with PI.
• Conduct laser hazard evaluations and laser classifications.
• Ensure prescribed control measures are in effect.
• Approve wording on area signs and equipment labels.
• Approve all new or modified laser installation facilities and laser equipment prior to use.
• Provide consulting services on all matters pertaining to safe use of lasers.
• Chair Laser Safety Committee (LSC) and schedule biannual meetings.
• Suspend and/or terminate laser system if it is deemed not safe.
• Ensure training records are maintained per state requirements.
• Perform root cause analysis for known or suspected accidents resulting from the use of a laser.
• For Class 3b and Class 4 lasers, the LSO is responsible for identifying both the Maximum Permissible Exposure (MPE) that is possible and the Nominal Hazard Zone (NHZ) based on submitted SOP.
• Ensuring laser barriers are adequate in conjunction with PI.
- Develop and conduct training programs on this LSP and on *General Laser Safety Awareness*.
- Conduct annual audits of operating Class 3b and Class 4 laser safety systems to ensure compliance with this LSP and applicable ANSI guidelines.

5.0 LASER INFORMATION

5.1 Hazards

Laser stands for Light Amplification by Stimulated Emission of Radiation. Radiation emitted by lasers is generally non-ionizing (unlike x-rays or gamma rays). They typically do not have the energy to break atomic bonds, are monochromatic (mainly one wavelength), are coherent (beam doesn’t spread out), and intense. Lasers usually operate in one or two modes: either continuous wave (CW) or pulsed. Pulsed lasers are generally more hazardous than continuous wave. Beams emitted by lasers can be visible or invisible. Lasers emitting invisible beams can be particularly hazardous.

Laser radiation can be hazardous to the eyes (thermal and retina burns) and skin (sunburn, accelerated skin aging, increased risk of cancer). Other hazards are chemical (e.g. toxic substances may be used or released) and electrical (e.g. electric shock). Lasers can cause fires, either from the beam or from associated electrical equipment.

The following key safety rules apply to laser beams:

- **Wear Proper PPE prior to turning on power.**
- **Remove any reflective jewelry, any unnecessary sources of specular reflection in beam path.**
- **A person’s eye level should not be at the same level as the beam, when seated or standing, to minimize unintended exposure.**
- **Keep body parts out of the beam path.**

Do not permit a person to stare at a laser from within the beam path.

Do not point the laser at a person's eye.

5.2 Laser Classification System

Lasers are classified into different classes based on the ability of the beam to cause biological damage to the eye or skin during use. The higher the class, the more potential for biological damage can occur. The following lasers classes exist:

Class 1 Laser System: Considered incapable of producing damaging radiation levels during operation and exempt from any control measures.

Class 1M Laser Systems: Considered incapable of producing hazardous exposure conditions during normal operation unless the beam is viewed with collecting optics (e.g. telescope) and is
exempt from any control measures other than to prevent potentially hazardous optically aided viewing.

Class 2 Laser Systems: Emits in the visible portion of the spectrum (400 nm to 700 nm) and eye protection is normally afforded by the aversion response (duration of a blink) for unaided viewing. These are usually Helium-Neon devices with a power output of 1 milliWatt (mW) or less.

Class 2M Laser Systems: Same as Class 2, but potentially hazardous when viewed with optical aids. Class 2M lasers should bear a CAUTION label stating, "Do Not Stare Into Beam."

Class 3R Laser Systems (previously classified as 3A): Has reduced control requirements and are potentially hazardous under some direct and specular reflection viewing conditions if the eye is appropriately focused and stable, but the probability of an actual injury is small. This laser will not pose either a fire hazard or a diffuse reflection hazard. Many laser pointers fall into this category. The power output of Class 3R lasers is < 5 mW.

Class 3B Laser Systems: May be hazardous under direct and specular reflection viewing conditions, but is normally not a fire hazard, diffuse reflection hazard, nor a laser generated air contaminant (LGAC) production hazard. Some high-power green laser pointers fall into this category. Class 3B power output ranges from 5 mW to 500 mW.

Class 4 Laser Systems: Is a hazard to the eye or skin from the direct beam, may pose a fire hazard or diffuse reflection hazard, and may produce “laser generated air contaminants” (LGAC) and hazardous plasma radiation. Lasers with power ratings greater than 0.5 Watt (W) are Class 4.

Table 1: Laser Classifications Summary and Associated Requirements

<table>
<thead>
<tr>
<th>Class</th>
<th>Control Measures</th>
<th>Training</th>
<th>LSO</th>
<th>Engineering Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not Required</td>
<td>Not Required</td>
<td>Not Required</td>
<td>Not Required</td>
</tr>
<tr>
<td>1M</td>
<td>Required</td>
<td>Application Dependent</td>
<td>Application Dependent</td>
<td>Application Dependent</td>
</tr>
<tr>
<td>2</td>
<td>Not Required</td>
<td>Not Required</td>
<td>Not Required</td>
<td>Not Required</td>
</tr>
<tr>
<td>2M</td>
<td>Required</td>
<td>Application Dependent</td>
<td>Application Dependent</td>
<td>Application Dependent</td>
</tr>
<tr>
<td>3R</td>
<td>Not Required</td>
<td>Not Required</td>
<td>Not Required</td>
<td>Not Required</td>
</tr>
<tr>
<td>3B</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>4</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
</tbody>
</table>

6.0 LASER SAFETY

6.1 Administrative Controls for Laser Safety

6.1.1 Laser Safety Committee (LSC)
The College of Engineering has a Laser Safety Committee (LSC), which reviews applications for proposed use of any regulated laser device (Class 3B or Class 4). The LSC works with each applicant to set control measures that ensure compliance with the safety requirements. The LSC then issues a formal Laser Use Authorization (LUA). The College Laser Safety Officer (LSO) chairs the LSC and runs the laser safety program on a day-to-day basis. LSC shall be a mix of LUA holders, laser safety experts, and administrative personnel. The LSC meets at least semiannually.

6.1.2 Laser Safety Officer (LSO)

The LSO will manage the LSP and must meet the following requirements:

- Obtain a certification for a LSO Program from a competent laser-training organization (Laser Institute of America).
- Monitor LUA holders for compliance, perform routine inspections and report to the LSC. The LSO has the authority to shut down any laser operation that is judged to be an immediate danger. LSO actions are subject to review by the LSC.
- Complete hazard analysis, for Class 3B or Class 4 lasers or lower hazard class lasers with embedded Class 3B or Class 4, to determine nominal hazard zone (NHZ) and the appropriate laser-controlled area (LCA).
- Ensure administrative and engineering controls are in place before LUA are approved. Ensure laser output data is valid so classification can be correctly based on maximum output power or radiant energy available for intended use. Typically this information can be provided by the manufacturer.

6.1.3 Laser Use Authorization (LUA)

Operation of a Class 3b or 4 laser requires an approved LUA, which is readily accessible in the lab where the laser is operated. The LUA specifies locations, laser supervisor, trained users, laser power output, wavelength, and pertinent information related to safe operation. The LUA template is shown in the Appendix and must be filled out and submitted to the COE LSO.

6.1.4 Standard Operating Procedure (SOP)

An SOP is required for all Class 3B and Class 4 lasers. The document is an integral part of each laser user’s safety program. The SOP describes training, responsibilities of personnel, PPE, engineering and administrative controls and alignment procedures. Equipment-specific operating guidelines are also part of the SOP. See the Appendix section for the SOP template used in the COE. The SOP should contain:

- Exact operations proposed (SOP)
- Alignment procedures
- Output emission limitations if excessive power or radiant energy is accessible during operation
- Required education and training
- Identification of authorized personnel to operate, maintain, service laser
- Diagram of LCA and engineering controls (barriers, interlocks)
- Required postings and PPE
- Identification of supervisor in charge
- Beam termination
- Beam path secured to avoid path above or below eye level of a person in any standing or seated position
- Secured power shutoff
- Appropriate control measures identified in ANSI Z136.1
- Ensure Viewing Limited < MPE.

The process of aligning the laser for all Class 3B and Class 4 lasers must be documented in an SOP. The reason for this requirement is that 60 percent of all laser accidents occur during beam alignment and/or manipulation.

Alignments should only be performed by those who have completed COE laser safety training. Additionally, the following actions should be taken during alignment:

- Exclude unnecessary personnel from the LCA.
- Use low-power visible lasers for path simulation of higher power visible or invisible lasers when possible.
- Wear laser eye protection and protective clothing.
- When aligning invisible laser beams, use beam display devices such as image converter viewers or phosphor cards to locate beams.
- Perform alignment tasks at the lowest possible power level.
- Use a shutter or beam-block to block high-power beams at their source except when actually needed during the alignment process.

6.1.5. Indoor Laser Control Area Requirements (Class 3B or Class 4)

The Class 3B and Class 4 laser control area shall:

- Be controlled to permit lasers and laser systems to be operated only by personnel who have been trained in laser safety and in the operation of the laser or laser system
- Have posting at entrance with the appropriate area warning sign approved by the LSO; postings inside the control area may be necessary as determined by the LSO
- Have flashing red light posted at lab entrance to indicate laser is on
- Be operated in a manner such that the beam path is well defined
- Require the appropriate eye protection for personnel within the laser-control area
- Be under the direct supervision of an individual knowledgeable in laser safety
- Be located so that access to the area by spectators is limited and requires approval of the laser control area supervisor
- Have any potentially hazardous beam terminated in a beam stop of an appropriate material
- Have only diffusely reflecting materials in or near the beam path, where feasible
- Have the laser secured such that the exposed beam path is above or below eye level of a person in any standing or seated position, if possible, except as required for medical use
- Have all windows, doorways, open portals, etc., from an indoor facility either covered or restricted in such a manner as to reduce the transmitted laser radiation to levels at or below the applicable ocular MPE
- Require storage or disabling (e.g., removal of the key or lock-out/tag-out) of the laser or laser system when not in use to prevent unauthorized use
- All Class 4 area or entryway safety controls shall be designed to allow both rapid egress by laser personnel at all times and admittance to the laser controlled area under emergency conditions.

6.1.6 Spectators around Class 3B or Class 4 Lasers
Spectators shall be permitted within the LCA if they have completed appropriate training and are wearing required PPE, or equipment is powered down and locked out of service. In either case, spectators are not allowed to use the equipment in the LCA.

6.1.7 Service Personnel (All Classes)
Personnel who require access to Class 3B or Class 4 lasers or laser systems enclosed within a protective housing or protected area enclosure shall comply with the appropriate control measures of the enclosed or embedded laser or laser system. The LSO shall confirm that service personnel have the education and safety training commensurate with the class of the laser or laser system contained within the protective housing.

6.2 Engineering Controls
Engineering controls are preferred over administrative controls. All laser products that are sold, imported, or otherwise distributed to users must comply with the Federal Laser Product Performance Standard (FLPPS – http://www.fda.gov/Radiation-EmittingProducts/).

Laser products sold as a component, component subsystems, or repair parts by or for manufacturers of certified laser products are not required to comply with the FLPPS. The manufacturers of such component laser products are required to register these products with the CDRH (https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPCD/classification.cfm). A laser or laser system may be developed or modified by a user for internal use only. User-developed or user-modified laser products shall have their engineering controls reviewed and approved by the LSO.

6.2.1 Protective Housing
A protective housing shall be provided for all classes of lasers or laser systems. The protective housing may require interlocks and labels. If a user-created enclosure does not meet the requirements of a protective housing (e.g., a non-interlocked cover), it shall be considered as a barrier or curtain. An advisory protective housing label that indicates the relative hazard of laser radiation contained within the housing shall be placed on all removable protective housings that have no safety interlock and which can be removed or displaced during operation, maintenance, or service, and thereby allow access to laser radiation in excess of the applicable MPE.

The LSO shall require posting advisory protective housing labeling on long distance (＞3 m) beam conduits that contain beams operating above Class 1 levels. Such labeling shall be placed on the outside of the conduit at appropriate intervals (＞3 m), to provide warning of the relative hazards of laser radiation contained within the conduit. A laser sunburst logo-type symbol is not required on such advisory protective housing labels.

6.2.2 Operating a Laser without a Protective Housing (Class 3B or Class 4)

If a laser is operated without a protective housing, the LSO shall require a hazard analysis and ensure that adequate engineering control measures are implemented appropriate to the class of maximum accessible emission level. The addition of engineering controls may include, but are not limited to barriers, shrouds, beam conduits, and beam stops.

6.2.3 Interlocks on Removable Protective Housings (All Classes with Embedded Class 3B or 4)

Protective housings that enclose Class 3B or Class 4 lasers or laser systems shall be provided with an interlock system that is activated when the protective housing is opened or removed during operation and maintenance. The interlock or interlock system shall be designed to prevent access to laser radiation above the applicable MPE. The interlock may, for example, be electrically or mechanically interfaced to a shutter that interrupts the beam when the protective housing is opened or removed.

6.2.4 Service Access Panels (All Classes)

Portions of the protective housing that are only intended to be removed from any laser or laser system by service personnel, which then permit direct access to laser radiation associated with a Class 3B or Class 4 laser or laser system, shall either:

- Be interlocked (fail-safe interlock not required); or
- Require a tool for removal and shall have an appropriate warning label on the panel.

If the interlock can be bypassed or defeated, a warning label with the appropriate indications shall be located on the protective housing near the interlock (see 4.6.6). The label shall include language appropriate to the laser hazard (see 4.6.1.3). The interlock design shall not permit the service access panel to be replaced with the interlock remaining bypassed or defeated.
6.2.5 Equipment Labeling

All laser equipment shall have appropriate warning labels. The label shall be affixed to a conspicuous place on the laser housing or control panel. Such labels should be placed on both the housing and the control panel if these are separated by more than 2 meters.

6.2.6 Key Control (Class 3B or Class 4)

Class 3B or Class 4 lasers or laser systems should be provided with a master switch. This master switch shall affect beam termination and/or system shutoff and shall be operated by a key or by a coded access (such as a computer code). As an alternative, the master switch can be designed to allow system activation using a momentary switch action (or alternative) that initiates system operation with the option that the key (or alternative) can be removed after operation commences. In this mode, if the system ceases to operate, the key switch (or alternative) must again be used to restart the laser or laser system.

A single master switch on a main control unit shall be acceptable for multiple laser installations where the operational controls have been integrated.

All energy sources associated with Class 3B or Class 4 lasers or laser systems shall be designed to permit lockout/tag-out procedures required by the Occupational Safety and Health Administration (OSHA) of the U.S. Department of Labor (see Section 10).

6.2.7 Viewing Windows and Diffuse Display Screens (All Classes)

All viewing windows and diffuse (reflective or transmitted) display screens included as an integral part of a laser or laser system shall incorporate a suitable means (such as interlocks, filters, attenuators) to maintain the laser radiation at the viewing position at or below the applicable MPE as determined by the LSO. Note: Flammability and decomposition products are important factors to consider in the selection of window and display screen materials. It is essential that the material used for viewing windows and diffuse display screens does not support combustion or release LGAC above the current occupational limits following exposure to laser radiation unless the proper safeguards are in place to ensure personnel safety.

6.2.8 Collecting Optics

All laser protective viewports and films sold other than as an integral part of a product should be labeled with the optical density and the spectral region for which protection is afforded. This information shall be obtained from the original equipment manufacturer.

6.2.9 Facility Window Protection (Class 3B or Class 4).

Facility windows (exterior or interior) that are located within the NHZ of a Class 3B or Class 4 laser or laser system shall be provided with an appropriate absorbing filter, scattering filter, blocking barrier, or screen that reduces any transmitted laser radiation to levels below the applicable MPE. Such laser windows shall be specifically selected to withstand direct and diffusely scattered beams. In this case, the window barrier shall exhibit a damage threshold for
beam penetration for a specified exposure time commensurate with the total hazard evaluation for the facility and specific application.

Note: Flammability and decomposition products are important factors to consider in the selection of the window material. It is essential that the window does not support combustion or release toxic airborne contaminants following a laser exposure.

All laser protective windows, sold other than as an integral part of a product, shall be labeled with the optical density and wavelength(s) for which protection is afforded. Such windows should also be labeled with the exposure time for which the limit applies and the conditions under which protection is afforded.

6.2.10 Laser Protective Barriers and Curtains (Class 3B or Class 4)

A blocking barrier, screen, or curtain that can block or filter the laser beam at the entryway should be used inside the LCA to prevent the laser radiation from exiting the area at levels above the applicable MPE. In some cases, where the barrier does not extend completely to the ceiling or to the floor, the LSO shall conduct an NHZ analysis to ensure safety is afforded to all workers outside the barrier-protected area.

Laser barriers shall be specifically selected to withstand direct and diffusely scattered beams. The barrier shall exhibit a damage threshold for beam penetration for a specified exposure time commensurate with the total hazard evaluation for the facility and specific application.

Note: Flammability and decomposition products are important factors to consider in the selection of the barrier material.

All laser protective barriers sold other than as an integral part of a product shall be labeled with the barrier exposure time for which the limit applies and the beam exposure conditions under which protection is afforded.

6.2.11 Collecting Optics (All Classes)

All collecting optics (e.g., lenses, telescopes, microscopes, endoscopes, and eye-loupes) that integrate the use of a laser or laser system shall incorporate suitable means, such as interlocks, filters, and attenuators, to maintain the laser radiation transmitted through the collecting optics to levels at or below the applicable MPE, as determined by the LSO. Note: Normal or prescription eyewear is not considered collecting optics.

All permanently mounted collecting optics housings containing laser protective filters sold other than as an integral part of a product shall be labeled with the optical density and wavelength(s) for which protection is afforded. All collecting optics filter housings should also be labeled with the threshold limit (TL) and exposure time for which the limit applies and the conditions under which protection is afforded.

6.2.12 Beam Paths (Class 3B or Class 4)
Control of the laser beam path shall be accomplished as described in the following:

6.2.12.1 Fully Open Beam Path (Class 3B or Class 4)
In applications of Class 3B or Class 4 lasers or laser systems where a beam path is unenclosed a laser hazard evaluation shall be conducted by the LSO. In some cases, the total hazard assessment may be dependent upon the nature of the environment, the geometry of the application, or the spatial limitations of other hazards associated with the laser use. This may include, for example, localized fume or radiant exposure hazards produced during laser material processing or surgery, robotic working envelopes, location of walls, barriers, or other equipment in the laser environment.

6.2.12.2 Limited Open Beam Path (Class 3B or Class 4)
In applications of Class 3B or Class 4 lasers or laser systems where the beam path is confined by design to significantly limit the degree of accessibility of the open beam, a hazard analysis shall be conducted by the LSO. The analysis will define the area where laser radiation is accessible at levels above the appropriate MPE and will define the appropriate control measures in that area. The LSO shall establish controls appropriate to the magnitude and extent of the accessible radiation.

6.2.12.3 Enclosed Beam Path (All Classes)
In applications of lasers or laser systems where the entire beam path is enclosed and the enclosure fulfills all requirements of a protective housing [i.e., limits exposure to laser radiation to levels at or below the applicable MPE, the requirements of Class 1 are fulfilled and no further controls are required. When the protective housing requirements are temporarily relaxed, such as during service, the LSO shall affect the appropriate controls. These may include establishing a temporary laser-controlled area and instituting appropriate administrative controls.

Protective housings that are of sufficient size to allow personnel within the enclosure require special interlocking (see 4.4.2.1.2).

6.2.13 Area Warning Device (Class 3B or Class 4)
A Class 3B laser-controlled area should and a Class 4 laser-controlled area shall have an area warning device that is visible prior to entering the area. The purpose of the area warning device is to ensure that persons who are about to enter the laser-controlled area are aware that a laser is emitting or is about to begin emitting accessible laser radiation within the area.

6.2.13.1 Visible Warning Device
A visible warning device is any device, mechanical or electrical, that indicates when the laser is operating. Examples include a single lamp, a laser warning sign that is lighted, or flashes when the laser is operating. The warning device shall be visible through laser eye protection. This light or lighted sign can be electrically interfaced and controlled by the laser power supply so that the light is on (or flashing) only when the laser is operating. If used, the emission indicator should be clearly noticeable under all anticipated lighting conditions, be conspicuously different from general lighting, and have a specific meaning within the operational area where it is used.
Note: Typically, green designates "safe," yellow designates "energized," and red designates "emitting."

6.2.13.2 Audible Warning Device
This device may be used to warn individuals in a greater space than the immediate laser area about startup or activation of the laser(s).

6.2.13.3 Laser Radiation Emission Warning (Class 3B or Class 4)
Within the laser-controlled area, an audible or visible laser radiation emission warning device (or emission indicator) should be used with Class 3B, and shall be used with Class 4 lasers or laser systems during activation or startup. The purpose of this radiation emission warning is to ensure that persons already within the laser-controlled area are aware that a laser is emitting or is about to begin emitting accessible laser radiation within the area. The most common laser radiation emission warning device is a single (red) light located on the laser or its control panel. This form of emission warning device is a requirement for any Class 3B or Class 4 laser or laser system certified for compliance with the CDRH or with IEC standards.

6.2.13.4 Visible Laser Radiation Emission Warning Devices
All lasers and laser systems complying with the CDRH or with IEC standards will have a visible laser radiation indicator. However, the LSO may determine that this visible laser radiation emission indicator is not easily visible everywhere within the laser-controlled area. In such cases, the LSO should consider adding another indicator such as a laser warning light or lighted sign that is viewable within the laser-controlled area and indicates when the laser is operating. This light or lighted sign could be electrically interfaced and controlled by the laser power supply so that the light is on or perhaps flashing only when the laser is operating. This indicator should be visible through laser protective eyewear.

Another possible configuration can be a warning light assembly that may be interfaced to the laser controller to indicate conditions of enabled laser (high voltage on), laser on (beam on), and area clear (no high voltage or beam on). A green light should be used to indicate a safe condition. In this case, the green light will indicate when the laser is not operational (high voltage off) and by an additional (yellow) light when the laser is powered up (high voltage applied, but no laser emission) and by an additional (flashing optional) red light that activates when the laser is operating.

6.2.13.5 Audible Laser Radiation Emission Warning Devices
For single-pulse lasers or laser systems, an audible warning system may commence operation when the laser power supply is charged for operation, for example, during the charging of capacitor banks. Note: Any distinctive and clearly identifiable sounds that arise from auxiliary equipment (such as a vacuum pump or fan) and that are uniquely associated with the emission of laser energy are also acceptable as audible warnings.

6.2.13.6 Other Considerations
The LSO shall also consider alternative control measures for the hearing and visually impaired.
6.2.14 Laser Controlled Area (Class 4)

In the Laser Controlled Areas, the following must be designed into the location.

6.2.14.1 Rapid Egress
All Class 4 area or entryway safety controls shall be designed to allow both rapid egress by laser personnel at all times and admittance to the laser-controlled area under emergency conditions.

6.2.14.2 Emergency Conditions
For emergency conditions, there shall be a clearly marked "Emergency Stop" or other appropriately marked device suitable for the intended purpose (remote controlled connector or equivalent device) of deactivating the laser or reducing the output to levels at or below the applicable MPE.

6.2.14.3 Entryway Controls
All Class 4 laser-controlled areas shall incorporate one of the following alternatives:

- Non-defeatable (non-override) Area or Entryway Safety Controls

 Non-defeatable entryway interlocks (e.g., electrical switches, pressure-sensitive floor mats, infrared, or sonic detectors) shall be used to deactivate the laser or reduce power output below the applicable MPE in the event of unexpected entry into the laser-controlled area (see Figure 1).

- Defeatable Area or Entryway Safety Controls.

 Defeatable entryway interlocks shall be used if non-defeatable controls limit the intended use of the laser. Applications requiring operation without interruption (e.g., long term testing) would be justified if it is clearly evident that there is no laser radiation hazard at the point of entry. Override of the safety controls shall be permitted to allow access to authorized personnel provided that they have been adequately trained and provided with adequate PPE (see Figure 1).
Figure 1 Area/Entryway Safety Controls for Class 3b and 4 Lasers Utilizing Entryway Interlocks
• Procedural Area or Entryway Safety Controls.

Where interlocks are not feasible or are inappropriate (e.g., medical procedures, service procedures, shared spaces) the following shall apply (see Figure 2):

1) All authorized personnel shall be adequately trained and adequate personal protective equipment shall be provided upon entry.

2) A door, blocking barrier, screen, curtains, etc., shall be used to block, screen, or attenuate the laser radiation at the entryway. The level of laser radiation at the exterior of these devices shall not exceed the applicable MPE, nor shall personnel experience any exposure above the MPE immediately upon entry.

3) At the entryway, there shall be an area-warning device indicating that the laser is energized and operating at Class 4 levels.

Figure 2 Entryway Safety Controls for Class 3B and 4 Lasers
6.2.14.4 Scanning Devices
Scanning devices, including rotating mirrored balls, shall incorporate a means to prevent laser emission if scan failure or other failure resulting in a change in either scan velocity or amplitude would result in exposures above the MPE.

6.3 Personal Protective Equipment (PPE)
PPE shall be determined by the LSO and the PI. For a detailed discussion on PPE, see ANSI Z136.1.

6.3.1 Laser Eye Protection (LEP)
Eye protection devices that are specifically designed for protection against radiation from Class 3B and Class 4 lasers or laser systems shall be required within the NHZ and their use enforced according to the SOP for the lab.

LEP may include goggles, face shields, spectacles, or prescription eyewear using special absorptive filter materials or reflective coatings (or a combination of both) to reduce the potential ocular exposure to or below the applicable MPE.

The following factors shall be considered when selecting appropriate LEP to use:

- Laser power and/or pulse energy
- Wavelength(s) of laser output
- Potential for multi-wavelength operation
- Radiant exposure or irradiance levels for which protection (worst case) is required
- Exposure time criteria
- MPE
- Optical density requirement of eyewear filters at laser output wavelength(s)
- Angular dependence of protection afforded
- Visible luminous (light) transmission (VLT) requirement and assessment of the effect of the eyewear on the ability to perform tasks while wearing the eyewear (if VLT < 20%, there may be insufficient light to perform the intended task)
- Need for side-shield protection and maximum peripheral vision requirement
- Radiant exposure or irradiance and the corresponding time factors at which laser safety filter characteristics degradation occurs, including saturable absorption especially for ultrashort (ultrafast) pulse lengths
- Need for prescription glasses
- Comfort and fit
- Strength of materials and capability of the front surface to produce a hazardous specular reflection
- Requirement for anti-fogging design or coatings
- LEP is to be cleaned and inspected annually to ensure a satisfactory condition
Users of LEP shall be trained to understand potential early signs of damage. These may include, but are not limited to, smoke, flame, incandescence, and luminescence.

6.3.2 Skin Protection

Skin protection around Class 4 lasers can best be achieved through engineering controls. In some cases, a laboratory jacket or coat may be used if fibers are tightly woven and the fabric is flame-retardant. LSO and PI approval is required for PPE.

6.4 Warning Signs

Warning signs shall be used with Class 3b and Class 4 laser systems to conform with ANSI Z535.2 requirements. A standard sign used at CSULB meeting the ANSI standard is shown in Figure 3. Four different signal words can be used with the following definitions:

DANGER – Indicates an immediately hazardous situation that, if not avoided, could result in death or serious injury. Limit use of this word to the most extreme conditions.

WARNING – Indicates an imminently hazardous situation that, if not avoided, could result in death or serious injury.

CAUTION – Indicates a hazardous situation that, if not avoided, could result in minor or moderate injury.

NOTICE – Is the preferred signal word to address practices not related to personal injury. The safety symbol shall not be used with this word. This signal word shall not be used in place of DANGER, WARNING, or CAUTION.

The signage shall be easily visible to laboratory occupants and visible from each access point into an area. See ANSI Z535.2 for more information.
6.5 Non-Beam Hazards
Non-beam hazards (NBH) are all hazards arising from the presence of a laser system, excluding direct exposure of the eyes or skin to a laser beam. NBH may occur when a material is exposed to a laser beam (e.g., fire or airborne contaminants), when materials used to generate the beam (e.g., flow-through gases, dyes and solvents) are released into the atmosphere, or when individuals contact system components (e.g., electrocution). Some NBH can be life threatening (e.g., electrocution, fire), and may require use of more stringent control measures than those discussed in Section 5.1. NBH include but are not limited to the following areas:

6.5.1 Physical hazards:
- Electrical hazards
- Non-laser radiation
- Fire hazards
- Explosion hazards
- Noise (e.g., pulsed excimer lasers)
- Nanoparticles from interaction of high energy lasers with solids
- Fiber optic fragment hazards

6.5.2 Chemical hazards:
- Laser-generated air contaminants
- Compressed gases
- Laser dyes and solvents
- Chemical agent control measures

All written SOPs shall address non-beam hazards in addition to beam hazards. Due to the diversity of NBH, assistance may be needed from safety, health physics, or industrial hygiene professionals.

7.0 TRAINING
7.1 Laser Safety Training
This Laser Safety Program is a specific subset of the general COE Safety Program. All involved in the use of college-regulated lasers shall be currently trained and in good standing with respect to the overall COE Safety Program.

7.1.1 General Training
Laser safety training must effectively communicate to the users the control measures and potential hazards of the laser equipment involved. Training is required for Class 1M, 2M, 3B, and 4 lasers.
Any staff and faculty responsible for the operation of a laser must ensure that all appropriate personnel and students receive training prior to operation of the laser. Training will be conducted by the LSO and documented on the training record in the Appendix section.

General training will consist of the following:

- Read the COE Laser Safety Program document
- Read latest copy of the LIA Laser Safety Guide
- Take the Laser Safety Quiz and send a completed copy to the COE LSO

The Laser Safety Guide can be purchased online from www.lia.org for $25 or a copy can be checked out from the COE Safety Office.

The COE LSO will grade the quiz and document the training. Device-specific training will be provided by the laser supervisor or principal investigator.

7.1.2 Refresher Training

Refresher training will be required for those who have stopped working with lasers for more than six months. They will need to repeat the training listed in section 7.1.1.

7.1.3 Trainer Expertise and Content

Education and training programs shall be conducted by individuals with training skills adequate and appropriate to the subject matter being taught. Each person shall have access to the LSP and specific SOPs that apply to their systems.

7.1.4 Laser Training Materials References

The following sources can be used to obtain information on laser safety. Copies are available in the COE Safety Office.

- ANSI Z136.4 -2010 Laser Safety Measurements for Hazard Evaluation
- Laser Safety Guide by Laser Institute of America
- FLPPS http://www.fda.gov/Radiation-EmittingProducts/

7.2 LSO Training

The LSO will be trained on potential hazards, control measures, and applicable standards pertaining to laser safety. The training should apply to the highest class of laser under the jurisdiction of the LSO. Training can be satisfied by completion of LIA LSO training course which meets LSO training requirements outlined by ANSI and OSHA.

8.0 LASER INCIDENTS

8.1 Laser Incidents or Near Miss Incidents
If an incident or near-miss occurs from the use of a Laser, the user must notify the PI and COE LSO. The LSO will conduct a root cause analysis of the incident and review with the LSC to determine corrective actions.

8.2 Examination Following a Suspected or Actual Laser Induced Injury

If it is determined that a medical examination is required due to personnel contacts with laser beams, radiation, laser produced air toxins, etc., then they shall be performed as soon as practical, usually within 48 hours.

During an emergency, Dial 911 FROM ANY OFFICE PHONE or use one of the special CSULB emergency phone boxes strategically located throughout campus and inside buildings. These are direct lines to CSULB Public Safety. Give them as much information as possible.

For non-emergency type injuries, the following applies to students:
1. Go to the Student Health Services for initial treatment when possible. If the student needs to be transported to the SHC or elsewhere, campus Public Safety will make arrangements.
2. Student must notify their supervisor.
3. Supervisor in charge of the area must file an Incident Report. These forms are available from the LSO. Do not have the injured student fill out the Incident Report; the lab supervisor is required to complete the report. Turn in the completed form to COE Safety.
4. Injured students are responsible for all medical costs incurred through treatment at any location other than SHS. This includes treatment sought for severe injuries (necessitating off-campus treatment) or injuries that occur when the SHS is closed. **EVEN IF THE STUDENT WAS INJURED IN CLASS.**

For non-emergency type injuries, the following applies to Faculty/Staff:
1. If the injury does not require emergency assistance but does require medical attention contact COE Safety. The employee will need to:
 a. Complete an Employee’s Claim for Workers Compensation Benefits Form
 b. Complete an Authorization for Medical Treatment Form for the appropriate facility
 c. Arrange transportation to medical facility with COE Safety or ASM.
 d. Supervisor must complete Supervisor Review Form and submit to Workers Compensation Coordinator within one working day.
2. If the employee feels the injury is not serious enough to warrant medical attention then the supervisor needs to prepare an Accident Investigation Report Form. Send the completed form to COE Safety.
9.0 LSP CHANGE LOG

The LSP is reviewed annually with updates recorded in the change log shown below.

<table>
<thead>
<tr>
<th>Date</th>
<th>Reviewer</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 9, 2020</td>
<td>Glen Seymour</td>
<td>Initial release to meet requirements from 2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chancellor’s Audit</td>
</tr>
</tbody>
</table>
10. APPENDIX
10.1 Standard Operating Procedure Template

INSTRUCTIONS: Please save the COE SOP template as a separate document and then update the blue text to customize an SOP for your laser application. When complete, email the completed SOP to the COE LSO.

STANDARD OPERATING PROCEDURE

FOR THE [specific name & class of laser (ex. He-Ne 3B)] LASER

Location [identify building-room here]

OPERATED BY [enter your name & date]

Fill in information regarding the following:

Prerequisites

Training
All persons who intend to operate a laser or who could be exposed to a hazardous laser beam or its reflection must receive documented CSULB Laser Safety Training from the Principle Investigator or the CSULB Laser Safety Officer.

Persons intending to operate a laser must receive training from the Principal Investigator or their designee, with respect to the safe operation of the particular laser. This training must be documented.

Medical Surveillance:
Not required at this time.

Responsibilities (see LSP):

Principal Investigator:

- Details regarding how laser users receive adequate and appropriate laser safety training prior to operating the laser(s). This training must include the review of the “CSULB Laser Safety Manual” and the “CSULB Laser Safety Training Document”. This training must be documented. The PI is also responsible for training laser users in the specific operation of individual lasers; this training should be documented. Each student must have ready access to a copy of the written operations guide.
- Ensure that all appropriate safety procedures are followed, that any laser safety devices (interlocks etc.) are functioning properly.
- Ensure that properly rated goggles are worn if a user could potentially be exposed to a hazardous beam or its reflection.
- Determine the nominal hazard zone (NHZ) of the laser. Safety devices such as beam stops, wall blocks, interlocks etc. must be used whenever possible to reduce the size of the NHZ.
• Supervise or otherwise ensure the adequate supervision of users, visitors and service personnel as appropriate, and provide adequate security to prevent unauthorized use.
• Correct and control all laser equipment and laser hazards, as appropriate.

Laser Users

• Must be authorized and appropriately trained to either operate or be in the presence of a potentially hazardous laser,
• Must wear properly rated goggles if she/he could be exposed to a hazardous beam or its reflection.
• Adhere to all appropriate rules and procedures.
• Immediately report accidents or potentially dangerous situations to the LSO, Supervisor and/or safety personnel. Common sense and prudent practice must be considered at all times when operating a laser.

The Laser Safety Officer (LSO) is responsible for implementing the CSULB laser safety policies. Specifically, the LSO will be responsible for periodic safety review of laser facilities, performing basic laser safety training, evaluating protective equipment, and initiating corrective measures as necessary.

Protective Equipment

Protective eyewear must be worn that is appropriate for the power and wavelength(s) of the lasers in use must in accordance with Section 6.0 of this procedure.

A lab coat or other protective apparel should be worn by personnel if laser operations involve the emission of UV radiation.

A lab coat and fully enclosed chemical splash goggles will be worn at all times while working with chemicals that could injure the eyes or skin. Appropriate laser goggles shall be worn in lieu of chemical goggles when the potential exists for the eyes to be exposed to a hazardous beam or its reflection.

Alignment

For the Laser Alignment Process, describe your alignment procedure step-by-step.

• Include all safety features described below which apply to your setup.
• Describe how your setup will prevent someone accidentally getting expose to the beam.
• Detail appropriate security measures to restrict access to the laboratory during the Alignment Process to protect personnel not wearing protective equipment from exposure.
• Assemble all needed items or tools to perform the alignment. Remember to keep objects off the laser table which may cause specular reflections.
• The laser should be set to the lowest practical power while performing alignments.
Avoid working with the room lights off. Reducing the illumination in the room causes the pupils to dilate and increases the possibility of eye injury. The potential for electrical shock or other hazard also increases when vision is hampered.

Appropriate eye protection must be worn by persons performing alignments and persons present in an area where a direct or reflected source of laser light could come into contact with their eye.

Beam stops should be in place at locations where the beam may leave the table or stray off its intended path. If beam stops, enclosures or other safety devices were moved to perform an alignment, they must be replaced prior to operation.

Never look directly into the beam. If intra-beam viewing is required to align the beam, use a remote viewing camera.

In the case of invisible laser emissions, a visible low power laser should be used for the purposes of alignment wherever possible.

Remember that 60% of laser accidents occur during alignment and beam manipulation. Use beam splitters with extreme caution and never fully rely on attenuating filters as they may fail.

Engineering & Administrative Controls

Engineering controls are interlocks or other physical restraints which limit the operation of the laser or impede access to the beam.

List applicable engineering controls e.g. locks on lasers, beam is enclosed by a plastic/metal/cardboard tube, laser is fastened to stationary base, laser is in locked area etc.

Administrative controls are policies and procedures which laser users are obligated to comply with. Users must comply with policies and procedures described in this SOP.

List applicable administrative controls in addition to those described in this SOP e.g. only faculty have keys, faculty send all students to Laser Safety Officer for training prior to laser use, etc.

Operational Steps

- Set-up all necessary equipment for the experiment, with power off.
- For Start-up: Describe start-up procedure in detail. If keys are used, include who has keys and where they are kept.

Procedural steps

Briefly (three to four paragraphs is typical), describe what you do during a typical experiment. Please give the actual “hands on” procedure, not the theory behind your experimentation.

Shut down

Describe in detail
10.2 COE Laser Safety Training Record

DEPARTMENT:______________________ LOCATION______________________

DEVICE SUPERVISOR:______________________ LASER CLASS:______________

LASER MAKE AND MODEL:__

TRAINING CONTENT SUMMARY

2. Review Laser Safety Micro-Course by Laser Professional, inc. Review all safety procedures and practices particular to this unit, including emergency shut-off procedures. **Know the location of the main power emergency cut-off switch and when to use it.** Discuss the potential physical, electrical and chemical hazards and control of such hazards. Know that the supervisor must be immediately informed of any unusual occurrences or malfunctioning of the unit.

3. Review proper eye protection measures for this unit. Emphasize that lasers may not be operated unless appropriate eye protection is worn by all persons who could potentially be exposed to a hazardous beam or its reflections. See “Goggle Instructions” document or contact LSO for more information.

4. Review the appropriate wording and location of any required signs and labels (per the Laser Institute of America’s “Laser Safety Guide, 12th Edition”). Review the CSULB “Laser Hazards and Emergency Response” poster and ensure that it is posted at the laser site. State that extra signs and labels are available in the COE Safety Office.

5. Review the written protocols and standard operating procedures for all Class 3B and Class 4 lasers at the above location(s). Note: the laser may NOT be operated until a written standard operating until a written standard operating procedure has been forwarded to and approved by the Laser Safety Officer.

6. Complete CSULB Laser Safety Training Quiz, provide to LSO for grading & review. Discuss the potential physical, electrical and chemical hazards and control of such hazards of each laser at the above location(s).

7. Discuss the responsibilities of the PI (see below).

8. Discuss the responsibilities of Personnel/Students (see below) who will operate or be in the presence of an operating laser.

9. Discuss emergency procedures (call 911), injury reporting, and sources of laser information.
COE LASER SAFETY TRAINING RECORD

DEPARTMENT: ________________________ LOCATION: ____________________________
DEPARTMENT: ________________________ LOCATION: ____________________________
DEVICE SUPERVISOR: ________________________ LASER CLASS: __________________________
LASER MAKE AND MODEL: ________________________

I hereby acknowledge that I have been instructed in and understand the applicable laser safety and health information for the laser listed above. I realize that inappropriate behavior and/or the misuse of equipment, materials etc. can lead to serious injury. I hereby agree to follow all instructions for safety as given by my instructor now and in the future. I hereby agree to fully comply at all times with all University policies and procedures associated with safety as it pertains to this equipment. I agree to work safely at all times, protecting both myself and those around me. I further agree that I will not operate any equipment or use any materials without appropriate instruction, supervision, and understanding of the potential hazards involved. I understand that I am responsible for medical treatment costs if I am injured in this class/lab.

<table>
<thead>
<tr>
<th>NAME (PRINT)</th>
<th>SIGNATURE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trainer Name (Print): ____________________________________

Trainer Signature: __

Date: __
10.3 Laser Use Authorization (LUA)

INSTRUCTIONS: Please save the LUA template as a separate document and complete the information based on your desired laser set-up. Email the completed LUA to the COE LSO.

LASER USE AUTHORIZATION (LUA) APPLICATION

Date: ______________________________

LUA # (LSC use only): _________________

Responsible User: _________________________________

Department: _________________________________

Building and room # where laser used: _________________

Names of Laser Users (must be trained prior to starting work)

<table>
<thead>
<tr>
<th>First</th>
<th>Last</th>
<th>ID#</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Laser Make: __________________________ Laser Model: __________________________

Serial Number: __________________ Laser Type: __________________________

Laser Classification (X): Class 3B ☐ Class 4 ☐ Unlabeled ☐

CW: Pulsed:

Wavelength (nm): ________________ Wavelength (nm): ________________

Max Power (W): ________________ Pulse Duration (sec): ________________

Average Power (W): ________________ Pulse Frequency (Hz): ________________

Max Energy (J): ________________ Average Energy (J): ________________

Beam diameter at aperture (mm): ________________

Beam divergence (mrad): ________________

Beam shape: circular, oval, square: ________________

Description of Laser Experiment(s): __

__

Applicant Signature: __________________________ Date: ________________