ABSTRACT
Numerous cases of severe tissue damage occur every day either from injuries, diseases, or surgery. Through tissue engineering, it is possible to restore muscle functionality that is lost from Volumetric Muscle Loss (VML). Through the process of decellularization, in which cells and DNA are extracted from tissues or organs, a biomaterial called extracellular matrix (ECM) can be fabricated. Bioengineered implants constructed of extracellular matrix (ECM) has shown tremendous potential in repairing VML and damaged muscle tissue. ECM-based scaffolds have been implanted into small rat models to investigate its regenerative properties and better understand the mechanisms that control the growth process. Multiple sources of evidence indicate that ECM is capable of altering the natural healing response of damaged tissue and promoting substantial proliferation of myofibers. This review explores the regenerative effects of ECM and its abilities in recruiting myogenic progenitor cells, improving muscle function, and promoting constructive remodeling.

ECM-BASED SCAFFOLDING TECHNIQUES
- After decellularization, a fully optimal ECM would closely mimic the environment of the tissue it is implanted into.
- ECM contains growth factors and myoinductive components that stimulate muscle growth and repair.
- The fabrication of electrosprun dECM scaffolds allows for modulation of architecture (fiber orientation) and mechanical properties.
- The intrinsic porosity of electrosprun ECM scaffolds also makes it accessible for the exchange of nutrients and metabolic waste.

ANALYSIS OF ECM IMPLANTATION
ECM promotes growth of myofibers
- To determine myofibril formation in an ECM implant, two biochemical components were immunostained: myogenin (right box), a transcription factor involved in myogenesis and muscle repair; desmin (left box), a muscle specific cytoskeleton protein.
- The amount of desmin positive fibers and myogenin positive nuclei were significantly higher in comparison between 28 days and 42 days post-recovery.

Functional improvement of ECM repaired defects
- Functional analysis was performed by measuring the peak isometric force of the nerve on the latissimus dorsi of a rat model.
- It was recorded that the absolute maximal isometric force (Po) of the mECM repair group was significantly higher than that of the non-repaired muscle group.
- There was little to no difference in absolute and normalized Po between the control group and ECM-repaired group.

Immunomodulation and Mobilization of Progenitor Cells
- After decellularization, a fully optimal ECM would closely mimic the environment of the tissue it is implanted into.
- ECM contains growth factors and myoinductive components that stimulate muscle growth and repair.

DISCUSSION/CONCLUSION
- The increase in myofibril formation over the course of 42 days indicates ECM is myoinductive and promotes myoblast differentiation.
- The improvement in isometric force of the rat’s motor nerves in the the latissimus dorsi indicates that neurogenesis took place within the defect repaired ECM.
- ECM modulates the immune response and recovery of damaged skeletal muscle by increasing myoinductive, M2 macrophage activation and PVSC recruitment.
- The mechanisms that promote constructive remodeling, restored function, and angiogenesis are still not fully understood. The addition of stem cells may be required to increase myofibril growth for larger defects.
- Further studies need to be done to fully optimize an ECM bioscaffold to produce clinically relevant volumes of skeletal muscle fiber for VML.
- Majority of in vivo studies are observed through small rodent models and have yet to be incorporated into larger mammals. The study on functionality demonstrates the potential of neurogenesis, but the dimensions of the defect does not reflect large-scale muscle damage.

FUTURE WORK
An optimized ECM scaffold will allow for full control of the architecture and tensile properties that can be adjusted for a range of muscle types. Improvement of the bioscaffold and the incorporation of stem cell therapies can allow for large-volumes of tissue regeneration and restored functionality for clinical use.

REFERENCES

ACKNOWLEDGEMENTS
This research was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Numbers; U10GM118979, TL4GM118980, R55GM118978. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.