

Thorough Identification and Characterization of Binding Modes via Molecular Modeling of BChE in complex with Di-n-alkyl Aryl Phosphate Derivatives CALIFORNIA STATE UNIVERSITY LONG BEACH

BACKGROUND

- Butyrylcholinesterase (BChE) is a nonspecific enzyme known to hydrolyze acetylcholine, a neurotransmitter associated with memory and learning functions,¹ making BChE associated with Alzheimer's Disease and dementia-like symptoms.
- One of our previous studies,² focused on simulations of thirteen organophosphate inhibitor-projects in complex with BChE, but failed to address and solve heuristic problems with the *k*-means clustering algorithm,³ which clusters BChE-inhibitor complexes into binding modes, or average conformations.
- Our last published study addressed the *k*-means' heuristic shortcomings using an intuitive statistical approach that will overcome the heuristic tendencies of k-means clustering and qualitatively validate clustering efficacy using internal metrics based on inter- and intra-cluster similarity.
- **Goal:** The study herein will revisit the thirteen organophosphate inhibitor projects and present reproducible and more accurate tabulations of contacts and interactions for each binding mode.

Figure 1. Visualization of 529-residue BChE in grayscale ribbon mode with active site residues shown as semi-transparent van der Waals surfaces (a) facing into the active site pocket from the gorge entrance and (b) rotated 90° about the vertical axis.

ACKNOWLEDGEMENTS

This research was supported by the National Institute of General Medical Sciences of the Nat

<u>Danna De Boer¹, Parker Ladd Bremer¹, Walter Alvarado², & Eric J. Sorin^{1,*}</u> Departments of ¹Chemistry & Biochemistry, ²Physics & Astronomy, California State University, Long Beach

METHODS

• Models:

- BChE model PDBID# 1P0I
- Inhibitors modeled & docked with ICM Pro
- Softwares & Parameters
 - Inhibitor partial charges calculated with Quacpac Tool Kit from OpenEye Scientific
 - General AMBER Force Field (GAFF)
 - BChE-inhibitor complex simulated using GROMACS 5.0.4 software (AMBER-03 FF for BChE)
 - Octahedral box using solvated with TIP3P water
 - 1.0 atm and 300 K (Berendsen barostat/thermostat)
 - 2.0 fs timestep, LINCS to constrain H atoms
 - Folding@Home: resulting structures sent to 1,000 computers around the world
 - 1000 simulations for each inhibitor, each simulation 100 – 110 ns with structures stored every 100 ps
 - Clustering Protocol from last publication ³

PRELIMINARY RESULTS

Contact tables efficiently display the various binding modes of enzyme-ligand complexes. The binding modes are organized in descending order by population. Each entry is the inhibitor functional group with the strongest interaction that is present at least 50% of the time. Displayed below are contact tables below for DIM5 and DAP4, the strongest and weakest inhibitors, respectively.

1000 Sims DIM5	ASN68	ASP70	GLN119	ALA277	SER287	TYR332	SER 198	GLU325	HIS438	GLY116	GLY117	ALA 199	TRP82	ALA328	PHE329	TRP231	PRO285	LEU286	VAL288	PHE398	ILE69	GLN71	PHE73	PR074	GLY75	PHE76	MET81	ASN83	SER79	TYR114	GLY115	PHE118	THR120	TYR128	GLU197	A SN397	TRP430	MET437	GLY439	TYR440	ILE442	Pop (%)
Mode	ode PAS CAT								OAH		CBS				ABS	5					ON	AL							Additional Prote				n Residues (APR)									
0			Ph		AK1	Ph	PO4		PO4	PO4	PO4	AK1	PO4	AK2	PO4	AK1	AK2	AK1	AK1	AK1	Ph										PO4	AK1	PO4		PO4		AK2					28.7
1	2	-	Ph		AK1	Ph	PO4		PO4	PO4	PO4	AK1	PO4	AK2	PO4	AK1	Ph	AK1	AK1	AK1	Ph				- 32			2 - D	Ph		PO4	AK1	PO4	(0)	PO4		AK2		AK2			20.2
2			Ph		AK1	Ph	PO4		PO4	PO4	PO4	AK1	PO4	AK2	PO4	AK1	Ph	AK1	AK1	AK1	Ph		Ĵ.	Ĵ	1 îl	Ph	AK2		Ph		PO4		PO4	20 - 11			AK2	AK2	AK2			18.7
3			Ph			Ph	PO4		PO4	PO4	PO4	AK1	PO4	AK2	PO4	AK1	PO4	AK1	AK1	AK1	Ph										PO4	AK1	PO4		PO4		AK2		AK2			13.2
4			PO4		AK1	Ph	AK1			AK1	PO4	AK1	Ph	Ph	PO4	AK1	Ph	AK1	PO4	AK1	AK2											AK1	PO4									9.2
5	Ph	1	PO4		AK1	AK2	PO4	1	AK1	PO4	PO4	AK1	PO4	AK2	PO4	AK1	AK2	AK1	AK1	AK1	Ph					- 32		0 Q	3 - 32		0 30		PO4	Q (-					6	2	10 - 10 P	6.6
6		Ph	AK1		AK1	Ph	AK1	20	PO4	PO4	PO4	AK1	PO4	AK2	PO4	AK1	PO4	AK1	AK1	AK1			1	i i	1 ii	Ph	AK2						PO4				Ph		2	(3.4
Table 2. Contact table for DAP4: 1000 simulations.																																										
1000 Sims DAP4	ASN68	ASP70	GLN119	ALA277	SER287	TYR332	SER198	GLU325	HIS438	GLY116	GLY117	ALA199	TRP82	ALA328	PHE329	TRP231	PRO285	LEU286	VAL 288	PHE398	ILE69	GLN71	PHE73	PRO74	GLY75	PHE76	MET81	ASN83	SER79	TYR114	GLY115	PHE118	THR120	TYR128	GLU197	ASN397	TRP430	MET437	GLY439	TYR440	ILE442	Pop (%)
Mode			PA	S			(CAT			OAH		-	ABS						OM	IL.					Additional Pro						in Residues (APR)										
0			PO4			AK2	P04		PO4	PO4	PO4	AK1	PO4	AK2	PO4	AK1	PO4	AK1	AK1	AK1	Ph											AK1	PO4		PO4		AK2		AK2	AK2		24
1	Ph		PO4		AK1	AK2	AK1		004	PO4	PO4	AK1	PO4	ALCO.	P04	AK1	AK2	AK1	AK1	AK1	Dh		AK2			-	_				DOA	AK1	PO4		DOA				11/0	_	-	17.7
2	Dh		POA		AK1	AK2	AK1	-	AK1	PO4	PO4	AK1	P04	AK2	P04	AK1	PO4	AK1	AK1	AK1	FII	2			-	-	-			_	P04	ANT	PO4	_	P04				AK2	-		10.5
3	Fn		P04	-	AK1	Ph	AK1		ANT	AK1	PO4	AK1	Ph	AR2	P04	AK1	Ph	AK1	PO4	AK1	AK2				-	+	-			-		AK1	PO4	-	-					+	-	13.8
5			1		ANT	AK2	PO4		PO4	PO4	AK1	AK1	PO4	AK2	PO4	AK1	PO4	AK1	AK1	AK1		-				-					AK1		PO4		PO4		AK2		AK2	AK2	-	6.6
6			Ph		AK1	Ph	PO4		PO4	PO4	PO4	PO4	Ph	AK2	PO4	AK1	Ph	AK1	AK1	PO4		6									PO4	AK1	Ph		PO4				AK2			5.7
7	3		PO4			PO4				PO4	PO4	8	Ph		PO4		AK1	4 8				5			S				338				PO4				×—	9.—39 	1			4
Electrostatic Hydrogen Bonding onal Institutes of Health under Award Numbers; UL1GM118979; TL4GM									GM1 ²	18980) Ch	arge-l GM1 ⁻	Dipol 18978	e 8. The	e cont	cent is] π-s solely	tackir y the i	ng respo	onsibili	ity of	the a	van der Waals authors and does not nece						Non-polar Ssarily represent the official vie						Backbone s of the National Institutes c							

Table 1. Contact table for DIM5: 1000 simulations.

1000 Sims DIM5	A SN68	ASP70	GLN119	ALA277	SER287	TYR332	SER 198	GLU325	HIS438	GLY116	GLY117	ALA 199	TRP82	ALA328	PHE329	TRP231	PR0285	LEU286	VAL288	PHE398	ILE69	GLN71	PHE73	PR074	GLY75	PHE76	MET81	A SN83	SER79	TYR114	GLY115	PHE118	THR120	TYR128	GLU197	ASN397	TRP430	MET437	GLY439	TYR440	ILE442	Pop (%)
Mode	ode PAS							CAT OAH					CBS ABS						S					ON	OML							Add	lition	al Pro	otein	Resid	sidues (APR)					
0			Ph		AK1	Ph	P04		PO4	PO4	PO4	AK1	PO4	AK2	PO4	AK1	AK2	AK	1 AK	I AK1	Ph										PO4	AK1	PO4		PO4		AK2					28.7
1	2	2	Ph		AK1	Ph	P04		PO4	PO4	PO4	AK1	PO4	AK2	PO4	AK1	Ph	AK	1 AK	I AK1	Ph				2 8			2 - 32 2	Ph		PO4	AK1	P04	60	PO4		AK2	1	AK2		90 - A	20.2
2			Ph		AK1	Ph	PO4		PO4	PO4	PO4	AK1	PO4	AK2	PO4	AK1	Ph	AK	1 AK	I AK1	Ph			8 86 23 00	03	Ph	AK2	. 03	Ph		PO4		PO4	20 X			AK2	AK2	AK2		20 2 10 2	18.7
3			Ph			Ph	PO4		PO4	PO4	PO4	AK1	PO4	AK2	PO4	AK1	PO4	AK'	1 AK	I AK1	Ph		e - 1	e - 17	18						PO4	AK1	PO4	3	PO4		AK2		AK2			13.2
4			PO4		AK1	Ph	AK1			AK1	PO4	AK1	Ph	Ph	PO4	AK1	Ph	AK	1 PO	4 AK1	AK2										-	AK1	PO4									9.2
5	Ph	÷	PO4		AK1	AK2	PO4	1	AK1	PO4	PO4	AK1	PO4	AK2	PO4	AK1	AK2	AK	1 AK	AK1	Ph			-1	- 32	- 22		1 (R			o - 33		PO4	Q - 13		-		1 2	÷	ş	90 - A	6.6
6		Ph	AK1		AK1	Ph	AK1		PO4	PO4	PO4	AK1	PO4	AK2	PO4	AK1	PO4	AK'	1 AK	AK1					1	Ph	AK2				s 25		PO4	1			Ph		2	ĺ.		3.4
Table 2. Contact table for DAP4: 1000 simulations.																																										
Sims DAP4	ASN68	ASP70	GLN11	ALA27	SER28	TYR33	SER19	GLU32	HIS438	GLY116	GLY117	ALA19	TRP82	ALA32	PHE32	TRP23	PRO28	LEU28(VAL 28	PHE39	ILE69	GLN71	PHE73	PRO74	GLY75	PHE76	MET81	ASN83	SER79	TYR11	GLY11	PHE118	THR12	TYR128	GLU19	ASN39	TRP43	MET43	GLY43	TYR44(ILE442	Pop (%)
Mode			PA	\S			1	CAT			OAH		-	CBS			aleste.	ABS	5					OM	L				Additional Pro							n Residues (APR)						
0	-		P04			AK2	PO4		PO4	P04	P04	AK1	P04	AK2	P04	AK1	P04	AK1	AK1	AK1	Ph				_		_					AK1	P04		P04		AK2		AK2	AK2		24
1	Ph		PO4		AK1	AK2	AK1		004	P04	P04	AK1	PO4	AIZO.	P04	AK1	AK2	AK1	AK1	AK1	Dh		AK2				_				DOA	AK1	PO4		004				11/0		_	17.7
2	-		PI		AK1	AK2	PU4	-	P04	PO4	PO4	AK I	P04	AKZ	P04	AK I	PO4	AKI	AKI	AKI	Pff		-	_	-	-	-	_	2 2		P04	AKI	P04		P04				AK2			16.5
3	Ph	-	P04		A1/4	Ph	AK1		ANT	1/14	PO4	AK1	Ph	AKZ	P04	AK1	Ph	AK1	PO4	AK1	AK2			-	-	-	-					AK1	P04	-						-	-	13.8
5	-		101		ANT	AK2	PO4		PO4	PO4	AK1	AK1	PO4	AK2	PO4	AK1	PO4	AK1	AK1	AK1	ru ve	-	-	-	-		-	-		_	AK1	11111	PO4		PO4		AK2		AK2	AK2		6.6
6			Ph		AK1	Ph	PO4		PO4	PO4	PO4	PO4	Ph	AK2	PO4	AK1	Ph	AK1	AK1	PO4		-		-	-						PO4	AK1	Ph		PO4	-			AK2		-	5.7
7	-		PO4			PO4	1	9 - 0		PO4	PO4	-	Ph		PO4		AK1	1			-	6	-						8 - 8	÷		9 - P	PO4					a				4
Electrostatic Hydrogen Bonding ional Institutes of Health under Award Numbers; UL1GM118979; TL4GN									GM11	8980	Ch	arge- GM1 ⁻	Dipol 18978	e 3. The	e con	tent is	π-s solel	tackir y the i	ng respo	nsibili	ity of	van der Waals						Non-polar necessarily represent the offic						Backbone views of the National Institutes of								

Figure 2. Medoid of the fifth binding mode of the BChE-DIM5 complex.

CONCLUSION & FUTURE WORK

Interaction motifs between BChE and thirteen separate inhibitor projects will be studied and compared. Future studies will improve on the generation of contact tables by introducing a weighted cut-off for specific interactions, thereby changing the entries to reflect more physically relevant contacts.

REFERENCES

- 2006, pp. 710–715.

Hasselmo, Michael E. "The Role of Acetylcholine in Learning and Memory." Current Opinion in Neurobiology, vol. 16, no. 6,

2. Alvarado, Walter, et al. "Understanding the Enzyme-Ligand Complex: Insights from All-Atom Simulations of Butyrylcholinesterase Inhibition." Journal of Biomolecular Structure and Dynamics, vol. 38, no. 4, 2020, pp. 1028–1041.

3. Bremer, Parker Ladd, et al. "Overcoming the Heuristic Nature" of k -Means Clustering: Identification and Characterization of Binding Modes from Simulations of Molecular Recognition Complexes." Journal of Chemical Information and Modeling, vol. 60, no. 6, 2020, pp. 3081–3092.