Success of CSULB Students in Introductory Mathematics and Statistics Courses

JEN-MEI CHANG, KRIS SLOWINSKI, TIANNI ZHOU COLLEGE OF NATURAL SCIENCES AND MATHEMATICS

JEN-MEI CHANG ASSOCIATE PROFESSOR MATHEMATICS \& STATISTICS

TIANNI ZHOU ASSOCIATE PROFESSOR MATHEMATICS \& STATISTICS

KRIS SLOWINSKI ASSOCIATE DEAN

CNSM

Honorary Member: Kent Merryfield, Mathematics \& Statistics

Success of CSULB Students in Introductory Mathematics and Statistics Courses

1. WHY INTRODUCTORY MATHEMATICS?
2. FIRST MATHEMATICS COURSE AND STUDENT SUCCESS
3. COURSE REDESIGN - IMPROVED PLACEMENT AND TARGETED STUDENT SUPPORT
4. CONCLUSIONS AND RECOMMENDATIONS

DATA SETS

- IPEDS DATA ON 4Y AND 6Y GRADUATION RATES
- CSUCO DASHBOARD
- CSULB IR TABLEAU - FRESHMAN DATASET
- FALL 2017 FIRST TIME FRESHMAN ADMISSION SCORES, ESM DATA, F'17 MATH GRADES, DEMOGRAPHICS
- FALL 2016 FIRST TIME FRESHMAN ADMISSION SCORES, ESM DATA, F'16 MATH GRADES, RETENTION
- IR CONFIDENTIAL GRADE ANALYSIS REPORTS
- EAB

- Less than half of America's college students ever graduate.
- Seventy percent of students assigned to developmental courses never complete college.

There are two central reasons that students don't complete college, and they typically operate in tandem:

- inadequate preparation \rightarrow non-completion of courses
- difficulty navigating college \rightarrow not taking correct courses

There are two central reasons that students don't complete college (or take longer than necessary), and they typically operate in tandem:

- inadequate preparation \rightarrow non-completion of courses
- difficulty navigating college \rightarrow not taking correct courses

CSULB TOP 100 "NON-PASSING" COURSES

AY 16-17:
100 COURSES
86,882 ENROLLED STUDENTS
9,875 D, F, WU GRADES (11.4\%)

IN THIS GROUP

AY 16-17:
13 COURSES IN MATH
8,001 ENROLLED STUDENTS
1,763 D, F, WU GRADES (22.0\%)

2,462 COURSES
284,090 ENROLLED STUDENTS 19,403 D, F, WU GRADES (6.8\%)

	TOTAL\# OF GRADES	UNIV SHARE	D+F+WU GRADES	D+W+WU UNIV SHARE	NON COMPLETION RATE
CSULB	$\mathbf{2 8 4 0 9 0}$	100.00%	19403	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{6 . 8 3 \%}$
CLA	97633	34.37%	7573	39.03%	7.76%
CHHS	52057	18.32%	1972	10.16%	3.79%
CNSM	33780	11.89%	4501	23.20%	13.32%
COTA	32143	11.31%	1179	6.08%	3.67%
COE	28244	9.94%	1735	8.94%	6.14%
CBA	27092	9.54%	2109	10.87%	7.78%
CED	10012	3.52%	255	1.31%	2.55%
UNIV	3129	1.10%	79	0.41%	2.52%

MATHEMATICS PATHWAYS

MATHEMATICS PATHWAYS AND EQUITY

```
\% URM \(\downarrow\)
MAPB \(\rightarrow\) MATH \(113 \rightarrow\) MATH \(122 \rightarrow\) MATH 123
```

GPA GAP ~ 0.2 IN EACH COURSE OF THE SEQUENCE

EQUITY GAPS IN EACH GRADE CATEGORY

CNSM DATA FELLOWS PRESENTATION MAY 11, 2018

MATHEMATICS PATHWAYS

COURSE REDESIGN 2012-16

PRE-BACCALAUREATE MATHEMATICS

CSULB ENTERING FRESHMAN REMEDIATION NEEDS

CSULB 6Y GRADUATION RATES

CSULB $4 Y$ GRADUATION RATES

MATH 113 (COLLEGE ALGEBRA) DFW RATE

CALCULUS REDESIGN

- ALEKS PPL is highly effective as a placement tool for STEM freshman
- Uniform homework and "benchmark" pre-tests administered through WebAssign and early interventions have improved completion
- Identification of at-risk students and mandatory intervention in the form of 75-minute weekly tutorials for the bottom 30% based on exam scores (4 midterm exams) taught by TAs or undergraduate students
- Freshman in calculus have high CSULB and STEM retention regardless of the grade

45\%

MATHEMATICS PATHWAYS

COURSE REDESIGN 2012-16

CSU FRESHMAN ADMISSIONS

CSU recommended placement for GE mathematics/quantitative reasoning courses based on multiple measures of academic proficiency (MMAP).

C S U L B EARLY START 2018 (5 weeks/1 unit with ALEKS PPL support)

CSULB EARLY START

JEN-MEI CHANG
ASSOCIATE PROFESSOR MATHEMATICS \& STATISTICS

History of ESM at CSULB

- In June 2010, Executive Order 1048 established the Early Start Program (ESP).
- Students were required to have achieved proficiency in English and/or Mathematics on or before the end of their first year of enrollment at a CSU campus, as directed by Executive Order 665.
- Early Start Mathematics Program (ESM) at CSULB was implemented in the summer of 2012.
- 1-unit and 3-unit ESM classes were offered during 2012-2016, both lecturebased.
>1-unit: meets 3 hr/day for 1 week
>3-uint: meets 3 hr/day for 4 weeks

2017 Early Start Mathematics Program at CSULB

3-unit
 (ESM 3, 21, 33)

1-unit
(ESM 1, 11)

1-unit ESM with ALEKS PPL in 2017

Course Outcomes

CR: advance to the next level

- 30-45: beginning algebra \rightarrow intermediate algebra
- 46 or higher intermediate algebra \rightarrow GE math
(e.g., CR in ESM 11 advances to MATH 113 equivalents in fall)

RP: satisfied the CSU ESM requirement, but do not advance to the next level
(e.g., RP in ESM 11 means taking MAPB 11 in fall)

NC: did not complete CSU ESM requirement, fall

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Week 1	7/10	$7 / 11$	$7 / 12$	7/13	$7 / 14$	7/15	7/16
	Take the initial proctored assessment Work in ALEKS for a minimum of 5 hours between class meetings. Visit the tutoring center for additional support						
Week 2	$7 / 17$	$7 / 18$	$7 / 19$	7/20	7/21	$7 / 22$	7/23
	Continue working in ALEKS; take unproctored assessment for practice Visit the tutoring center for additional support Work in ALEKS for a minimum of 5 hours between class meetings.						
Week 3	7/24	$7 / 25$	7/26	7/27	$7 / 28$	7129	7/30
	Continue working in ALEKS; take unproctored assessment for practice Visit the tutoring center for additional support						
Week 4	7/31	8/1	8/2	8/3	8/4	8/5	8/6
	Take the final proctored assessment						

Historic Failure Rate

On target to "lose" 98.5\% or 318 students in 2017 while, in fact, 115 were lost. The new format w/PPL saved 203 students at least one semester of dev math at CSULB.

Improving academic success

ESM is the key, data analysis is the vehicle

[^0]PPL Itans In toc order

2018 Early Start Mathematics Program at CSULB

		Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
	Week 1	6/25	6/26	$6 / 27$	$6 / 28$	6/29	6.30	7/1
Recommend	$\begin{gathered} 9: 00 \\ -\quad \\ 12: 00 \end{gathered}$	1. Go over syllabus with lead ins tructor 2. Create ALEKS logins 3. Take the ALEKS tour 4. Take the initial proctored assessment (1) and work in ALEKS for 20 minutes 5. Go over students' responsibilities/homework	LEARN in ALEKS a minimum of 20 topics AND for a minimum of 5 hours before the next class meeting					
destination	Week2	7/2	73	$7 / 4$	$7 / 5$	76	$7 / 7$	718
	9:00-9:05	Meet in lab to receive break-out (BO) schedule	LEARN in ALEKS a minium of 20 topics AND for a minimum of 5 hours AND take an unproctored assessment (2) before the nextclass meeting					
	9:05-9:50	Attend BO 1						
students to	9:55-10:40	Attend BO 2						
	10:45-11:30	Attend BO 3						
	11:30-12:00	Mork in ALEKS						
	Week 3	7/9	7/10	7/11	7/12	7/13	7/14	7/15
	9:00-9:05	Meet in lab to receive break-out (BO) schedule	LEARN in ALEKS a minium of 20 topics AND for a minimum of 5 hours AND take an unproctored assessment (3) before the next class meeting					
	9:05-9:50	Attend BO 1						
	9:55-10:40	Attend BO 2						
ensure a	10:45-11:30	Attend BO 3						
	11:30-12:00	Work in ALEKS						
	Week 4	7/16	7/17	7/18	7/19	$7 / 20$	721	$7 / 22$
placement	9:00-9:05	Meet in lab to receive break-out (BO) schedule	LEARN in ALEKS a minium of 20 topics AND for a minimum of 5 hours before the next class meeting					
	9:05-9:50	Attend BO 1						
	9:55-10:40	Attend BO 2						
	10:45-11:30	Attend BO 3						
	11:30-12:00	Work in ALEKS						
	Week5	7/23	7/24	7125	$7 / 26$	$7 / 27$	7128	$7 / 29$
	9:00-10:00	Logistics and last minute ALEKS catch-up						
	$\begin{gathered} 10: 05 \\ -\quad \\ 12: 00 \end{gathered}$	1. Take the final proctored assessment (4) 2. Discuss math placement outcome with individual students						

CSULB ENTERING FRESHMAN REMEDIATION NEEDS

MATH REMEDIATION AND MAJOR-SWITCHING PATTERNS

CONSIDER 2009, 2010, AND 2011 COHORTS OF FRESHMAN (JOINTLY) HOW MANY STUDENTS GRADUATED IN 6 YEARS IN EACH COLLEGE (TOTAL FROM 3 COHORTS)?

	BY ENTRY COLLEGE	BY GRADUA TION COLLEGE	NET DIFF
CBA	756	1010	254
CED	199	206	7
COE	848	757	-91
CHHS	1544	1808	264
CLA	1289	2635	1346
CNSM	1036	546	-490
COTA	900	828	-72
UNDCL	1218	0	-1218
	7790	7790	

THERE ARE 7 POSSIBLE "GRADUATION COLLEGES": CBA, CED, COE, CHHS, CLA, CNSM, COTA

THERE ARE 8 POSSIBLE "FRESHMAN ENTRY COLLEGES": CBA, CED, COE, CHHS, CLA, CNSM, COTA, UNDCL

THERE ARE 8 POSSIBLE "FRESHMAN ENTRY COLLEGES": CBA, CED, COE, CHHS, CLA, CNSM, COTA, UNDCL

WHICH "ENTRY COLLEGE - GRADUATION COLLEGE" COMBINATIONS PRODUCE MOST GRADUATES?

WHICH "ENTRY COLLEGE - GRADUATION COLLEGE" COMBINATIONS PRODUCE MOST GRADUATES?

Graduation College	Entry College	NO REMED	ONLY ENGLISH	1 MATH AND 1 ENGL	ONLY 1 MATH	2 MATH AND 1 ENGL	2 MATH ONLY	TOTAL
CLA	CLA	587	97	47	83	123	75	1012
CHHS	CHHS	511	202	59	52	115	29	968
COTA	COTA	432	84	21	37	42	22	638
COE	COE	397	159	15	3	15		589
CLA	UNDCL	215	96	54	36	86	26	513
CBA	CBA	266	151	25	13	16	5	476
CLA	CHHS	145	76	47	28	76	21	393
CNSM	CNSM	301	62	8	6	4	2	383
CLA	CNSM	157	51	32	16	37	4	297
CHHS	UNDCL	112	80	35	11	50	7	295
CBA	UNDCL	94	67	14	7	10	4	196
CHHS	CNSM	96	55	20	6	13	6	196
CLA	CBA	62	30	13	7	28	5	145
CHHS	CLA	61	18	11	5	37	5	137
CLA	COTA	79	18	12	8	15	5	137
CED	CED	70	22	8	9	20	3	132
CLA	COE	56	20	6	4	9	2	97
CHHS	CBA	29	23	14	3	18	3	90
CBA	CNSM	46	20	7	4	4	3	84
CBA	CHHS	42	26	5	4	2	1	80

WHICH "ENTRY COLLEGE - GRADUATION COLLEGE" COMBINATIONS PRODUCE MOST GRADUATES WHO STARTED IN MATH REMEDIATION?

Graduation College	Entry College	NO REMED	ONLY ENGLISH	1 MATH AND 1 ENGL	ONLY 1 MATH	2 MATH AND 1 ENGL	2 MATH ONLY	TOTAL	1 OR 2 REMEDIAL MATH	2 REMEDIAL MATH
CLA	CLA	587	97	47	83	123	75	1012	328	198
CHHS	CHHS	511	202	59	52	115	29	968	255	144
CLA	UNDCL	215	96	54	36	86	26	513	202	112
CLA	CHHS	145	76	47	28	76	21	393	172	97
COTA	COTA	432	84	21	37	42	22	638	122	64
CHHS	UNDCL	112	80	35	11	50	7	295	103	57
CLA	CNSM	157	51	32	16	37	4	297	89	41
CBA	CBA	266	151	25	13	16	5	476	59	21
CHHS	CLA	61	18	11	5	37	5	137	58	42
CLA	CBA	62	30	13	7	28	5	145	53	33
CHHS	CNSM	96	55	20	6	13	6	196	45	19
CED	CED	70	22	8	9	20	3	132	40	23
CLA	COTA	79	18	12	8	15	5	137	40	20
CHHS	CBA	29	23	14	3	18	3	90	38	21

WHICH "ENTRY COLLEGE - GRADUATION COLLEGE" COMBINATIONS PRODUCE LEAST GRADUATES WHO STARTED IN MATH REMEDIATION?

Graduation College	Entry College	NO REMED	ONLY ENGLISH	1 MATH AND 1 ENGL	ONLY 1 MATH	2 MATH AND 1 ENGL	$\begin{aligned} & 2 \text { MATH } \\ & \text { ONLY } \end{aligned}$	TOTAL	1OR 2 REMEDIAL MATH	2 REMEDIAL MATH	1 OR 2 REMEDIA L MATH \%	2 REMEDIAL MATH \%
COE	CNSM	35	7					42	0	0	0.00\%	0.00\%
CNSM	CLA	14	4					18	0	0	0.00\%	0.00\%
COE	CLA	10	3		0			13	0	0	0.00\%	0.00\%
CNSM	COTA	9	2					11	0	0	0.00\%	0.00\%
COE	CHHS	5	5	0				10	0	0	0.00\%	0.00\%
CNSM	CBA	5	3					8	0	0	0.00\%	0.00\%
CED	CBA		3					3	0	0	0.00\%	0.00\%
CNSM	CED	1						1	0	0	0.00\%	0.00\%
CNSM	COE	18	5	1				24	1	0	4.17\%	0.00\%
CNSM	CNSM	301	62	8	6	4	2	383	20	6	5.22\%	1.57\%
COE	COE	397	159	15	3	15		589	33	15	5.60\%	2.55\%
COTA	CBA	8	4			1		13	1	1	7.69\%	7.69\%
CNSM	CHHS	33	12	4		1		50	5	1	10.00\%	2.00\%
COE	UNDCL	45	17	5	0	2		69	7	2	10.14\%	2.90\%
CBA	CLA	39	16	3	2	2		62	7	2	11.29\%	3.23\%
CBA	CBA	266	151	25	13	16	5	476	59	21	12.39\%	4.41\%
COE	CBA	12	6	2		1		21	3	1	14.29\%	4.76\%
CED	CNSM	9	3	1			1	14	2	1	14.29\%	7.14\%
CBA	CHHS	42	26	5	4	2	1	80	12	3	15.00\%	3.75\%

2009-11 FTF WHO STARTED IN REMEDIAL MATHEMATICS AND GRADUATED IN 6 YEARS BASED ON THE COLLEGE OF ORIGIN

	\# OF REMEDIAL FTF WHO GRADUATED	\# OF REMEDIAL FTF WHO SWITCHED
CNSM	20	157
COE	33	57
CBA	59	95
CED	40	32
CHHS	255	202
CLA	328	74

2013 FIRST TIME FRESHMAN WHO GRADUATED IN 4 YEARS (BY COLLEGE OF GRADUATION)

	Null	CBA	CED	COE	CHHS	CLA	CNSM	COTA	TOTAL GRADUATED	FTF COHORT	4Y RATE
NO REMEDIATION NEEDED	111	69	12	91	192	281	38	93	887	3054	29.04\%
ONE MATH AND ONE ENGLISH REMEDIATION NEEDED	8	5	0	3	2	6	0	0	24	191	12.57\%
ONLY ENGLISH REMEDIATION CLASS NEEDED	21	22	1	17	11	24	1	5	102	550	18.55\%
ONLY ONE MATH REMEDIATION CLASS NEEDED	11	3	0	0	5	25	0	5	49	228	21.49\%
TWO MATH AND ONE ENGLISH REMEDIATION NEEDED	8	7	1	12	5	5	0	3	41	241	17.01\%
TWO MATH REMEDIATION CLASSES NEEDED	4	0	0	0	1	4	0	3	12	79	15.19\%
								TOTAL	1115	4343	25.67\%
						MATH REM TOTAL			126	739	17.05\%

CSU FRESHMAN ADMISSIONS

CSU recommended placement for GE mathematics/quantitative reasoning courses based on multiple measures of academic proficiency (MMAP).

C S U L B EARLY START 2018 (5 weeks/1 unit with ALEKS PPL support)

Can we predict whether a student can pass Math113 in the first fall semester using high school GPA and math SAT?

TIANNI ZHOU
ASSOCIATE PROFESSOR MATHEMATICS \& STATISTICS

FALL 2017 FRESHMAN IN CACLULUS PATHWAY

High School GPA

FALL 2017 FRESHMAN IN ALGEBRA

Logistic Regression Model
 $>$ Bina ry outc ome is common in research:

- Pass/fail
- Graduate in 4 years (Yes/No)
- Dead / Alive
- Hospitalisation (Yes/ No)
- Met target e.g. total cholesterol $<5.0 \mathrm{mmol} / \mathrm{I}$ (Yes/ No)
$>$ Outcome Variable Y, takes on a value of either 1 or 0
\rightarrow We predict the probability of an outc ome occuring

$$
p: \quad P(Y=1)
$$

> Use explanatory variablesto predict the probability of an outcome

- Example: use high school GPA and math SATscores to predict the probability of students passing Math 113 (Pre-calc ulus Algebra)
- Logistic model is used to estimate the probability of a binary response based on one or more explanatory (or independent) variables.

How do we formulate relationship between probability of an outcome and explanatory variables?

$$
(-\infty, \infty)
$$

Odds of the ith student pass Math 113

Solve for p_{i}, we have

$$
p_{i}=\frac{e^{\left(\beta_{0}+\beta_{1} * G P A_{i}+\beta_{2} * S A T_{i}\right)}}{1+e^{\left(\beta_{0}+\beta_{1} * G P A_{i}+\beta_{2} * S A T_{i}\right)}}
$$

The estimated logistic regression model based on Fall 2016 data is

$$
\operatorname{logit}\left(\widehat{p_{i}}\right)=-10.544+2.08 * G P A_{i}+0.0077 * S A T_{i}
$$

OR

$$
\widehat{p}_{i}=\frac{e^{\left(-10.544+2.08 * G P A_{i}+0.0077 * S A T_{i}\right)}}{1+e^{\left(-10.544+2.08 * G P A_{i}+0.0077 * S A T_{i}\right)}}
$$

-Build the model based on Fall 2016 data
-Apply the model to a new data set, Fall 2017 data
-Make prediction of each student who took the class in Fall 2017

Case Summaries

High GPA	Math SAT	Pass Math 113 in Fall 2017 (actual Outcome)	Predicted Probability of pass Math 113 in Fall 2017	Predicted Outcome	
$\mathbf{1}$	3.30	560	Fail	Pass	
$\mathbf{2}$	3.12	590	Pass	Pass	
$\mathbf{3}$	3.55	630	Pass	0.656	Dangerously misclassified
$\mathbf{4}$	2.84	540	Pass	0.622	Pass
$\mathbf{5}$	4.03	570	Pass	0.385	Fail

$>$ Sensitivity: measures the proportion of positives that are correctly identified as such
$>$ Specificity: measures the proportion of negatives that are correctly identified as such
actual
outcome

	Cut-point=0.65	fail	pass
predicted	fail	117	96
outcome	pass	72	307

$>$ Sensitivity (true positives) : 307/(96+307) $=0.762$
$>$ Specificity (true negatives) : 117/(117+72)=0.619
>1-sensitivity (false negatives): $96 /(96+307)=0.238$
>1-specificity(false positive): 72/(117+72)=0.381

Predicted probability of passing Math 113 as a function of math SAT and different categories of high school GPA

FALL 2016 FRESHMAN IN MAPB 11 - COLLEGE RETENTION AS OF MARCH 2018

	FALL 2016 COLLEGE			
S'18 COLLEGE	UNDCL	CBA	COE	CNSM
CBA	7	50	0	3
CED	3	2	0	0
COE	0	0	2	0
CHHS	19	5	1	8
CNSM	2	1	0	9
CLA	13	5	1	3
COTA	2	1	1	1
UNDCL	49	2	6	3
NOT RETAINED	33	31	8	18
TOTAL	128	97	19	45
CSULB RET	74.22%	68.04%	57.89%	60.00%

FALL 2016 CNSM FRESHMAN IN MATH 113 AND CALCULUS - COLLEGE RETENTION AS OF MARCH 2018

	FALL 2016 MATH 113 GRADE			
S'18 COLLEGE	A	B	C	D-W
CBA	1	2	2	0
CED	0	1	4	1
COE	1	1	2	0
CHHS	3	11	8	3
CLA	0	4	3	5
CNSM	17	26	16	3
COTA	0	1	3	0
UNDCL	$\mathbf{1}$	5	3	2
NOT RETAINED	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{7}$	$\mathbf{2 2}$

	FALL 2016 MATH CALCULUS GRADE			
S'18 COLLEGE	A	B	C	D-W
CBA	1	4	2	0
CED	0	0	0	1
COE	7	2	4	1
CHHS	5	9	4	6
CLA	2	3	1	1
CNSM	42	30	29	10
COTA	0	1	0	1
UNDCL	0	1	3	1
NOT RETAINED	$\mathbf{1}$	3	$\mathbf{2}$	5

TOTAL	24	53	48	36
CSULB RET	95.83%	96.23%	85.42%	38.89%
CNSM RET	70.83%	49.06%	33.33%	8.33%

TOTAL	58	53	45	26
CSULB RET	98.28%	94.34%	95.56%	80.77%
CNSM RET	72.41%	56.60%	64.44%	38.46%

SUMMARY AND RECOMMENDATIONS

COURSE REDESIGN 2012-16

- EARLY START COMBINED WITH ADAPTIVE LEARNING IS VERY EFFECTIVE IN IMPROVING STUDENTS' PREPARATION AND PLACEMENT
- STUDENTS WHO START MATH SEQUENCE IN MAPB (PARTICULALRY STEM MAJORS) ARE AT INCREASED RISK FOR ATTRITION OR GRADUATING LATE
- FIRST MATH FRESHMAN COURSE PREDICTS MAJOR-SWITCHING PATTERNS (MAPB VS 113 VS CALCULUS)
- HS GPA AND SAT COMBINATION CORRELATES WITH FRESHMAN SUCCESS IN ALGEBRA
- ALEKS PPL PLACEMENT AND TARGETED SUPPORT IMPROVE STUDENT SUCCESS IN CALCULUS

ACKNOWLEDGEMENTS

GE B2 REDESIGN COMMITTEE			
Name	Department	Title	Role
Annabelle Cariaga	EOP - Retention	Associate Director	EOP Liaison
Carlos Ayon	College Assistance Migrant Program	Recruiter	CAMP Liaison
Dr. Babette Benken	Math \& Stat	Professor	LBCP Liaison/TA TRAINING
Dr. Bill Pedersen	Psychology	Professor	PSY 110
Dr. David Sanfilippo	Disabled Students Services	Director	DSS Liaison
Dr. Florence Newberger	Math \& Stat	Professor	Algebra/Business Calc
Dr. Isabella Lanza	Human Dev	Assistant Professor	HDEV 190
Dr. Jen-Mei Chang	Math \& Stat	Associate Professor	QR Course
Dr. Josh Chesler	Math \& Stat	Associate Professor	MTED 110 / QR Course
Dr. Kagba Suaray	Math \& Stat	Professor	STAT 108
Dr. Kris Slowinski	CNSM	Associate Dean	COORDINATION/COMMUNICATION
Dr. Nancy Martin	Sociology	Assistant Professor	SOC 170
Dr. Ryan Blair	Math \& Stat	Assistant Professor	QR Course
Dr. Tangan Gao	Math \& Stat	Chair	CURRICULUM/SCHEDULE
Dr. Tianni Zhou	Math \& Stat	Associate Professor	STAT 108

Dr. John Brevik
Dr. Chung-Min Lee
Dr. Xuhui Li
Dr. Kent Merryfield

[^0]: LONG BEACH SATVEESSTy

