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1. Topics

(a) Algebras and σ-algebras of sets; countable sets.

(b) Real and extended real numbers; open, closed, and compact sets; structure of open sets;
continuity of real functions.

(c) Lebesgue outer measure on R; Lebesgue measurable sets; Lebesgue measure; Fσ, Gσ and
Borel sets and their relation to Lebesgue measurable sets; the Cantor set.

(d) Lebesgue measurable functions; approximation by simple functions, step functions and
continuous functions, Lusin’s Theorem.

(e) The Lebesgue integral: definition, basic properties, relation to Riemann integral, conver-
gence theorems.

(f) Convergence: pointwise, a.e., uniform, almost uniform, in mean, in measure; implications
between modes of convergence; Egoroff’s Theorem.

(g) Differentiation: Vitali’s Lemma, monotone functions and functions of bounded variation;
indefinite integrals; absolute continuity.
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