Formulas, PDE comprehensive exam

The characteristic equations for the non-linear first order equation F'(x,y, z,p,q) = 0,
2 =1, p= Uy ¢ = U, are given by

dr/dt = F, dy/dt = F, dz/dt = pF, + qF, dp/dt = —F, — F.,p dq/dt = —F, — F.q
Green’s identities:
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where 0,, is the (outward) normal derivative.

The fundamental solution of the Laplace operator A in R" is given by the potential
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The Poisson integral formula is u(§) = / H(z,&)u(x)dS,, where H(z,§) is the Pois-
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son kernel. The Poisson kernel in the upper half-space in R (that is, &, > 0) is
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The Poisson kernel for the unit ball in R is
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Kirchoff’s formula gives the solution to the pure initial value problem for the three
dimensional wave equation u, = cAu with initial data u(z,0) = g(z), u,(z,0) = h(z).
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The solution to the pure initial value problem for the heat equation u; = Awu with initial
condition u(z,0) = g(z) is given by the convolution u(z,t) = / K(x —y,t)g(y) dy of the
heat kernel K (x,t) with the initial data. The heat kernel for nR; 1 is given by

K(x,t) = (47mt) "2 exp(—x?/4t)

The Fourier transform Fg and the inverse Fourier transform F 'h are
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Fourier inversion formula: F~!(Fg) = g. Basic formula: F(dyg)(§) = i&xFg(&).



