Formulas, PDE comprehensive exam

• The characteristic equations for the non-linear first order equation F(x, y, z, p, q) = 0, $z = u, p = u_x, q = u_y$, are given by

$$dx/dt = F_p \qquad dy/dt = F_q \qquad dz/dt = pF_p + qF_q \qquad dp/dt = -F_x - F_z p \qquad dq/dt = -F_y - F_z q$$

• Green's identities:

$$\int_{\Omega} (g\Delta f - f\Delta g) \, dx = \int_{\partial\Omega} (g\partial_n f - f\partial_n g) \, dS$$
$$\int_{\Omega} (g\Delta f + \nabla g\nabla f) \, dx = \int_{\partial\Omega} g\partial_n f \, dS$$
$$\int_{\Omega} \Delta f \, dx = \int_{\partial\Omega} \partial_n f \, dS$$

where ∂_n is the (outward) normal derivative.

• The fundamental solution of the Laplace operator Δ in \mathbb{R}^n is given by the potential

$$K(x) = \begin{cases} (2\pi)^{-1} \log \|x\| & \text{if } n = 2\\ -(4\pi \|x\|)^{-1} & \text{if } n = 3 \end{cases}$$

• The Poisson integral formula is $u(\xi) = \int_{\partial\Omega} H(x,\xi)u(x)dS_x$, where $H(x,\xi)$ is the Poisson kernel. The Poisson kernel in the upper half-space in \mathbb{R}^n (that is, $\xi_n > 0$) is

$$H(x',\xi) = \frac{2\xi_n}{\omega_n |x' - \xi|^n} \qquad x' = (x_1, \dots, x_{n-1})$$

The Poisson kernel for the unit ball in \mathbb{R}^n is

$$H(x,\xi) = \frac{1 - |\xi|^2}{\omega_n |x - \xi|^n} \qquad ||x|| = 1$$

• Kirchoff's formula gives the solution to the pure initial value problem for the three dimensional wave equation $u_{tt} = c^2 \Delta u$ with initial data $u(x, 0) = g(x), u_t(x, 0) = h(x)$.

$$u(x,t) = (4\pi)^{-1} \frac{\partial}{\partial t} \left(t \int_{\|\xi\|=1} g(x+ct\xi) \, dS_{\xi} \right) + (4\pi)^{-1} t \int_{\|\xi\|=1} h(x+ct\xi) \, dS_{\xi}$$

• The solution to the pure initial value problem for the **heat equation** $u_t = \Delta u$ with initial condition u(x,0) = g(x) is given by the convolution $u(x,t) = \int_{\mathbb{R}^n} K(x-y,t)g(y) \, dy$ of the heat kernel K(x,t) with the initial data. The heat kernel for n = 1 is given by

$$K(x,t) = (4\pi t)^{-1/2} \exp(-x^2/4t)$$

• The Fourier transform $\mathcal{F}g$ and the inverse Fourier transform $\mathcal{F}^{-1}h$ are

$$\mathcal{F}g(\xi) = \int_{\mathbb{R}^n} \exp(-ix \cdot \xi) g(x) \, dx, \qquad \mathcal{F}^{-1}h(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} \exp(-ix \cdot \xi) h(\xi) \, d\xi$$

Fourier inversion formula: $\mathcal{F}^{-1}(\mathcal{F}g) = g$. Basic formula: $\mathcal{F}(\partial_k g)(\xi) = i\xi_k \mathcal{F}g(\xi)$.

Spring 2022

PARTIAL DIFFERENTIAL EQUATION COMPREHENSIVE EXAM

Please read and sign the integrity statement below, and attach it to the answer that you submit to dropbox.

I will not share the contents of this comprehensive exam with any person or site. I have only used allowable resources for this comprehensive exam. I have neither given nor received help during this comprehensive exam.

Name _____

Signature _____

Do any six problems. Clearly indicate in the table below which problems you want to be graded. If you do not select any problems we will grade the first 6 problems. Good luck!

Problems	1	2	3	4	5	6	7	8	
]

1. Solve the following initial value problem using characteristics.

$$u_x^2 + u_y^2 = u$$

with the initial condition $u(0, y) = ay^2$. For what positive a are there solutions? Is the solution unique?

- 2. Consider the second order linear equation $x^2 u_{xx} y^2 u_{yy} = 0$
 - (a) Classify the equation as hyperbolic, parabolic, or elliptic.
 - (b) Rewrite this equation in its canonical form.
- 3. Let $\Omega \subset \mathbb{R}^n$ denote a bounded, connected domain with smooth boundary. Use Green's identity and the energy method to show that $u(\mathbf{x}, t) = 0$ is the unique solution to the following parabolic PDE with bi-harmonic diffusion:

$u_t = -\Delta(\Delta u)$	$\mathbf{x}\in\Omega,\ t>0,$
$\Delta u(\mathbf{x},t) = 0$	$\mathbf{x}\in\partial\Omega,\ t>0,$
$u(\mathbf{x},t) = 0$	$\mathbf{x}\in\partial\Omega,\ t>0,$
$u(\mathbf{x},0) = 0$	$\mathbf{x} \in \Omega, \ t = 0.$

4. (a) Green's identity is given by

$$\int_{\Omega} (g\Delta f - f\Delta g) \mathrm{d}x = \int_{\partial\Omega} (g\partial_n f - f\partial_n g)$$

where ∂_n is the normal derivative. Prove this by applying the divergence theorem.

(b) Let K(x) denote the fundamental solution of the Laplace operator Δ in \mathbb{R}^3 , and let v(x) be an infinitely differentiable function which equals zero for |x| > R. Apply Green's identity to prove the following identity:

$$\int_{\mathbb{R}^3} K(x)v(x)\mathrm{d}x = v(0)$$

5. If Ω is a bounded open set in \mathbb{R}^2 with smooth boundary $\partial \Omega$. Show that if u satisfies

$$\Delta u = 0 \quad \text{in} \quad \Omega$$

then, using the mean value property for harmonic functions to show

$$\max_{\Omega} u = \max_{\partial \Omega} u$$

6. (a) Verify that u(x,t) = F(x+ct) + G(x-ct), F and G twice differentiable, is a solution of the wave equation

$$u_{tt} = c^2 u_{xx}$$

Use this to solve the initial value problem for the wave equation with initial conditions

$$u(x,0) = f(x), \text{ for } x \in \mathbb{R},$$

 $u_t(x,0) = g(x), \text{ for } x \in \mathbb{R}.$

Verify your solution.

- (b) Solve the initial boundary problem for the wave equation on the quarter plane $\{(x,t) : x > 0, t > 0\}$ with general initial conditions, as above, but for x > 0, and boundary condition u(0,t) = 0, for t > 0.
- 7. Consider the wave equation in the first quadrant x > 0, t > 0

$$u_{tt} = u_{xx}, \quad 0 < x < \infty, \ t > 0,$$

$$u(x,0) = f(x), \quad 0 < x < \infty,$$

$$u_t(x,0) = g(x), \quad 0 < x < \infty,$$

$$u(0,t) = 0, \qquad t > 0,$$

where $f \in C^{2}([0,\infty))$ and $g \in C^{1}([0,\infty))$ satisfy f(0) = f'(0) = g(0) = 0.

- (a) Solve the problem using the odd extensions of f and g.
- (b) Sketch the domain of dependence of a point (x_0, t_0) where $0 < x_0 < \infty$ and $t_0 > 0$.
- (c) Sketch the region of influence of a point x_0 where $0 < x_0 < \infty$.
- 8. Let $\Omega = B_1(\mathbf{0})$ denote the unit ball in \mathbb{R}^2 centered at the origin. Show the solution to

$$u_t(\mathbf{x}, t) = \Delta u(\mathbf{x}, t) \quad \text{in} \quad \Omega_T := \{(\mathbf{x}, t) : \mathbf{x} \in \Omega, \ 0 < t < T\}$$
(1)
$$u(\mathbf{x}, t) = h(\mathbf{x}, t) \qquad \mathbf{x} \in \partial\Omega, \ t > 0$$

$$u(\mathbf{x}, 0) = g(\mathbf{x}) \qquad \mathbf{x} \in \Omega, \ t = 0$$

satisfies the inequality

$$e^{-8t} (1 - |\mathbf{x}|^2)^2 \le u(\mathbf{x}, t) \le e^{-4t} (1 - |\mathbf{x}|^2)$$

if $g(\mathbf{x}) = 1 - |\mathbf{x}|^2$ and $h(\mathbf{x}, t) = 0$. You may use the identities $\Delta |\mathbf{x}|^2 = 4$ and $\Delta |\mathbf{x}|^4 = 16|\mathbf{x}|^2$ (valid in two dimensions) without proof.