
Formulas, PDE comprehensive exam

• The characteristic equations for the non–linear first order equation F (x, y, z, p, q) = 0,
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where @
n

is the (outward) normal derivative.

• The fundamental solution of the Laplace operator ¢ in Rn

is given by the potential

K(x) =

Ω
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• The Poisson integral formula is u(ª) =
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H(x, ª)u(x)dS
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, where H(x, ª) is the Pois-

son kernel. The Poisson kernel in the upper half-space in Rn

(that is, ª
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> 0) is
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The Poisson kernel for the unit ball in Rn
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H(x, ª) =

1° |ª|2

!
n

|x° ª|n kxk = 1

• KirchoÆ ’s formula gives the solution to the pure initial value problem for the three

dimensional wave equation u
tt

= c2
¢u with initial data u(x, 0) = g(x), u

t

(x, 0) = h(x).
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• The solution to the pure initial value problem for the heat equation u
t

= ¢u with initial

condition u(x, 0) = g(x) is given by the convolution u(x, t) =

Z
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K(x° y, t)g(y) dy of the

heat kernel K(x, t) with the initial data. The heat kernel for n = 1 is given by
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exp(°x2/4t)

• The Fourier transform Fg and the inverse Fourier transform F°1h are
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°n

Z

Rn

exp(°ix · ª)h(ª) dª

Fourier inversion formula: F°1
(Fg) = g. Basic formula: F(@

k

g)(ª) = iª
k

Fg(ª).
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Do any six problems. Clearly indicate in the table below which problems you want to be graded.

If you do not select any problems we will grade the first 6 problems. Good luck!

Problems 1 2 3 4 5 6 7 8

1. Solve the following initial value problem using characteristics.

u

2
x

+ u

2
y

= u

with the initial condition u(0, y) = ay

2
. For what positive a are there solutions? Is the solution

unique?

2. Consider the second order linear equation x

2
u

xx

� y

2
u

yy

= 0

(a) Classify the equation as hyperbolic, parabolic, or elliptic.

(b) Rewrite this equation in its canonical form.

3. Let ⌦ ⇢ Rn

denote a bounded, connected domain with smooth boundary. Use Green’s identity

and the energy method to show that u(x, t) = 0 is the unique solution to the following parabolic

PDE with bi-harmonic di↵usion:

u

t

= ��(�u) x 2 ⌦, t > 0,

�u(x, t) = 0 x 2 @⌦, t > 0,

u(x, t) = 0 x 2 @⌦, t > 0,

u(x, 0) = 0 x 2 ⌦, t = 0.

4. (a) Green’s identity is given by

Z

⌦
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where @

n

is the normal derivative. Prove this by applying the divergence theorem.

(b) Let K(x) denote the fundamental solution of the Laplace operator � in R3
, and let v(x) be

an infinitely di↵erentiable function which equals zero for |x| > R. Apply Green’s identity

to prove the following identity:

Z

R3

K(x)v(x)dx = v(0)

5. If ⌦ is a bounded open set in R2
with smooth boundary @⌦. Show that if u satisfies

�u = 0 in ⌦

then, using the mean value property for harmonic functions to show

max
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u
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6. (a) Verify that u(x, t) = F (x + ct) + G(x � ct), F and G twice di↵erentiable, is a solution of

the wave equation

u

tt

= c

2
u

xx

Use this to solve the initial value problem for the wave equation with initial conditions

u(x, 0) = f(x), for x 2 R,
u

t

(x, 0) = g(x), for x 2 R.

Verify your solution.

(b) Solve the initial boundary problem for the wave equation on the quarter plane {(x, t) : x >

0, t > 0} with general initial conditions, as above, but for x > 0, and boundary condition

u(0, t) = 0, for t > 0.

7. Consider the wave equation in the first quadrant x > 0, t > 0

u

tt

= u

xx

, 0 < x < 1, t > 0,

u(x, 0) = f(x), 0 < x < 1,

u

t

(x, 0) = g(x), 0 < x < 1,

u(0, t) = 0, t > 0,

where f 2 C

2
([0,1)) and g 2 C

1
([0,1)) satisfy f(0) = f

0
(0) = g(0) = 0.

(a) Solve the problem using the odd extensions of f and g.

(b) Sketch the domain of dependence of a point (x0, t0) where 0 < x0 < 1 and t0 > 0.

(c) Sketch the region of influence of a point x0 where 0 < x0 < 1.

8. Let ⌦ = B1(0) denote the unit ball in R2
centered at the origin. Show the solution to

u

t

(x, t) = �u(x, t) in ⌦

T

:= {(x, t) : x 2 ⌦, 0 < t < T} (1)

u(x, t) = h(x, t) x 2 @⌦, t > 0

u(x, 0) = g(x) x 2 ⌦, t = 0

satisfies the inequality

e

�8t
�
1� |x|2

�2  u(x, t)  e

�4t
(1� |x|2)

if g(x) = 1 � |x|2 and h(x, t) = 0. You may use the identities �|x|2 = 4 and �|x|4 = 16|x|2
(valid in two dimensions) without proof.
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