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Formulas, PDE comprehensive exam

• The characteristic equations for the non–linear first order equation F (x, y, z, p, q) = 0,

z = u, p = u
x

, q = u
y

, are given by
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q
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• Green’s identities:
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where @
n

is the (outward) normal derivative.

• The fundamental solution of the Laplace operator ¢ in Rn

is given by the potential

K(x) =

Ω
(2º)

°1
log kxk if n = 2

°(4ºkxk)°1
if n = 3

• The Poisson integral formula is u(ª) =

Z

@≠

H(x, ª)u(x)dS
x

, where H(x, ª) is the Pois-

son kernel. The Poisson kernel in the upper half-space in Rn

(that is, ª
n

> 0) is

H(x0, ª) =

2ª
n

!
n

|x0 ° ª|n x0
= (x1, . . . , xn°1)

The Poisson kernel for the unit ball in Rn

is

H(x, ª) =

1° |ª|2

!
n

|x° ª|n kxk = 1

• KirchoÆ ’s formula gives the solution to the pure initial value problem for the three

dimensional wave equation u
tt

= c2
¢u with initial data u(x, 0) = g(x), u

t

(x, 0) = h(x).

u(x, t) = (4º)
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µ
t
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• The solution to the pure initial value problem for the heat equation u
t

= ¢u with initial

condition u(x, 0) = g(x) is given by the convolution u(x, t) =

Z

Rn

K(x° y, t)g(y) dy of the

heat kernel K(x, t) with the initial data. The heat kernel for n = 1 is given by

K(x, t) = (4ºt)°1/2
exp(°x2/4t)

• The Fourier transform Fg and the inverse Fourier transform F°1h are

Fg(ª) =

Z

Rn

exp(°ix · ª)g(x) dx, F°1h(x) = (2º)

°n

Z

Rn

exp(°ix · ª)h(ª) dª

Fourier inversion formula: F°1
(Fg) = g. Basic formula: F(@

k

g)(ª) = iª
k

Fg(ª).



Do any six problems. Clearly indicate in the table below which problems you want to be graded.

If you do not select any problems we will grade the first 6 problems. Good luck!

Problems 1 2 3 4 5 6 7 8

1. Use the method of characteristics to solve the Cauchy problem u = u

2
x

� 3u2
y

with u(x, 0) = x

2.
Is the solution uniquely defined? If so, justify. If not, produce two solutions.

2. Assume that u 2 C

2(⌦) \ C(⌦) is sub-harmonic,

�u(x) � 0 for all x = (x1, . . . , xn) 2 ⌦

with ⌦ ⇢ Rn a bounded, connected domain. Show that any such u 2 C

2(⌦) \ C(⌦) satisfies
the weak maximum principle

max
x2⌦

u(x) = max
z2@⌦

u(z).

3. Consider the initial value problem for a conservation law

u

t

(x, t) + q

0�
u(x, t)

�
u

x

(x, t) = 0

u(x, 0) = g(x) (1)

(a) Use the Leibniz rule

d

dt

 Z
b(t)

a(t)
u(x, t) dx

!
= u(b(t), t)b0(t)� u(a(t), t)a0(t) +

Z
b(t)

a(t)
u

t

(x, t) dx

to derive the Rankine-Hugoniot jump condition for the speed s

0(t) of a shock from the
following conservation law property — the solution u(x, t) of (1) must obey

d

dt

Z
b

a

u(x, t) dx = q

�
u(a, t)

�
� q

�
u(b, t)

�

for any interval (a, b) ⇢ R.
(b) Consider following equation

u

t

+
1

2
uu

x

= 0 x 2 R, t > 0 u(x, 0) =

(
2 if x < 0

1 if x > 0.
(2)

Find the entropy solution to (2), and justify that your solution is the entropy solution.



4. Consider the hyperbolic equation

u

tt

� 2�u
tx

� u

xx

= 0 x 2 R, t > 0

u(x, 0) = g(x) x 2 R, t = 0,

u

t

(x, 0) = h(x) x 2 R, t = 0, (3)

for � 2 R any real number. Use an ansatz of the form

u(x, t) = F (x+ �+t) +G(x+ ��t) �± := �±
p
1 + �

2

to derive the d’Alembert formula

u(x, t) =
�+g(x+ ��t)� ��g(x+ �+t)

�+ � ��
+

1

�+ � ��

Z
x+�+t

x+��t

h(z) dz

for the solution of (3).

5. Solve the following problem —

u

tt

� u

xx

= 0, t > max{�x, x}, t � 0,

u(x, t) = �(t), x = t, t � 0

u(x, t) =  (t), x = �t, t � 0,

where �, 2 C

2([0,1)) and �(0) =  (0).

6. Use the odd extension to find the solution to the following problem

u

t

� ku

xx

= 0, 0 < x < 1, t > 0,

u(x, 0) = f(x), 0 < x < 1,

u(0, t) = 0, t > 0,

where f 2 C([0,1)).



7. Let ⌦ ⇢ Rn denote a smooth, bounded domain. Suppose that a smooth function u(x, t) satisfies
the heat equation

u

t

(x, t) = �u(x, t)

in ⌦ ⇥ {t > 0}, and that either u(x, t) = 0 or (@⌫u)(x, t) = 0 on @⌦. Use the energy method
to prove that

E(t) :=
1

2

Z

⌦
u

2(x, t) dx+

Z
t

0

Z

⌦
|ru|2(x, s) dxds

is constant in time, then prove uniqueness for smooth solutions to non-homogeneous Dirichlet

u(x, 0) = g(x) and u(x, t) = h(x, t) on @⌦

and non-homogeneous Neumann

u(x, 0) = g(x) and (@⌫u)(x, t) = h(x, t) on @⌦

initial/boundary value problems for the heat equation.

8. Let ⌦ ⇢ Rn denote a bounded, connected domain with smooth boundary. Let u(x) denote the
solution to Poission’s equation

�u(x) = f(x) (x 2 ⌦) and u(x) = g(x) (x 2 @⌦),

and let G(x,y) denote the Green’s function for ⌦. Prove Green’s representation

u(x) =

Z

@⌦
(@⌫G)(x,y)g(y) d�

y

+

Z

⌦
G(x,y)f(y) dy

for the solution to Poisson’s equation. (Here (@⌫G)(x,y) := r
y

G(x,y) · ⌫(y) means normal
derivative).


