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Choose any Five Problems. You may use only a non-graphing calculator.

1. a) Let x0, x1, . . . , xn be (n + 1) distinct points, and let f(x) be defined at these points.
Prove that the polynomial Pn(x) of degree ≤ n which interpolates f(x) at these (n + 1)
points exists and is unique. Develop all details needed in your proof and clearly define any
special symbols you use.

b) Let x0, x1, . . . , xn be (n + 1) distinct points in the interval [a, b]. Show that a quadrature
formula Q(f) =

∑n
i=0 Aif(xi) for approximating

∫ b
a f(x)dx is exact for all polynomials of

degree ≤ n if and only if Ai =
∫ b
a li(x)dx, 0 ≤ i ≤ n, where li(x) is the Lagrange polynomial

li(x) ≡
n∏

j=0,j 6=i

(
x− xj

xi − xj

)
.

Explain key details in your proof.

2. a) Let ‖ · ‖∗ be a new norm defined on Rn by ‖x‖∗ ≡ c max{|x1|, . . . , |xn|} for a constant
c > 0 and for all x ∈ Rn, i.e. ‖x‖∗ = c‖x‖∞. Let ‖A‖∗ be the corresponding natural matrix
norm induced on A ∈ Rn×n. Prove that

‖A‖∗ = max
1≤i≤n

n∑
j=1

|aij|.

Include all details.
Hint: The proof proceeds just like the one for ‖A‖∞ with only small changes.

b) Let A ∈ Rn×n. Let ‖ ·‖ be any norm on Rn and ‖A‖ be the corresponding natural matrix
norm induced on A. Suppose that A is nonsingular, Ax = b, and r = b− Ax̃ for x, x̃ ∈ Rn.
Prove that

‖x− x̃‖
‖x‖

≤ K(A)
‖r‖
‖b‖

where K(A) is the condition number of A.

c) Let A ∈ Rn×n. Let ‖ · ‖ be any norm on Rn and ‖A‖ be the corresponding natural matrix
norm induced on A. Let rσ(A) be the spectral radius of A. Prove that if rσ(A) < 1 then
limk→∞ ‖Ak‖ = 0. You may use other facts that you know about rσ(A) in your proof.



3. a) Let M ∈ Rn×n with x(k), x(k+1), and g ∈ Rn in the matrix iteration formula
x(k+1) = Mx(k) + g. Assume the spectral radius rσ(M) < 1 and let x ∈ Rn be a fixed-point
of the iteration. Give a direct proof (without quoting a similar result) that x(k) converges to
x as k →∞ for all x(0) ∈ Rn.

Hint: Derive a suitable form for (x(k) − x).

b) Let A ∈ Rn×n be strictly diagonally dominant. Let the matrix iteration formula from
part (a) now represent the Jacobi iteration x(k+1) = MJx(k) + g for solving Ax = b, b ∈ Rn.
Prove that rσ(MJ) < 1.

4. Let Πn be the vector space of all polynomials of degree ≤ n.

a) The polynomial P3(x) = x3 − 3
5
x is orthogonal to Π2 relative to the weight function

w(x) ≡ 1 on [−1, 1]. Obtain the Gaussian quadrature formula that is based on P3(x). Also,
state the precision of this quadrature formula.

b) Let Pn+1(x) ∈ Πn+1 be orthogonal to Πn relative to a weight function w(x) ≥ 0 on [a, b].
Denote by x0, x1, . . . , xn the (n+1) real roots of Pn+1, all in (a, b). Let Q(f) =

∑n
i=0 Aif(xi)

be a quadrature formula to approximate
∫ b
a w(x)f(x)dx. Prove that if Q(f) has precision

≥ n, then the precision of Q(f) is actually at least 2n + 1.

c) Let f(x) be a smooth function and define F (x) ≡
∫ x
a f(t) dt. Recall the Trapezoidal rule

quadrature formula is Q(f) = h
2
[f(a) + f(a + h)] . Derive the error term of the Trapezoidal

rule by applying Taylor series expanded about a to F (a+h) and Q(f) in
∫ a+h
a f(t) dt−Q(f).

5. a) Let Q ∈ Rn×n be an orthogonal matrix. Prove that ‖Q‖2 = 1. Also, in the 2-norm,
prove that the condition number K(Q) = 1.

b) Let

A =


−1 0

1 0
1 3
1 3

 .

Use the QR method to obtain the QR factors of the matrix A above. You do not have to
actually form Q if you identify Q by matrix multiplication. Explicitly compute R. Show all
work.

Note: You may choose to solve part (c) below at the same time you solve part (b).

c) For the matrix A in part (b), consider the system of equations Ax = b where b =
(2, 0, 6, 0)T . Use the QR factors which you found in part (b) to obtain the actual least-
squares solution x∗ = (x∗1, x

∗
2)

T of this system. If you could not solve part (b), explain fully
how you would have proceeded to solve this least-squares problem.



6. Consider solving numerically the initial-value problem y
′
(x) = f(x, y), y(x0) = y0, by

using the linear multi-step method

wi+1 =
3

4
wi +

1

4
wi−2 +

3

2
h f(xi, wi) .

a) Determine by a direct calculation (without quoting a general result) the order of the local
truncation error of this method.

b) Analyze the method for consistency, stability, and convergence. Determine whether the
method is strongly stable, weakly stable, or unstable. Explain all your conclusions and state
any theorems you use in your analysis.

c) Discuss the advantages and disadvantages of using implicit multi-step methods versus
explicit multi-step methods.

7. a) Show that the central difference formula

D(h) =
y(x0 + h)− y(x0 − h)

2h

has an error expansion of the form

D(h) = y
′
(x0) + k1h

2 + k2h
4 + k3h

6 + · · ·

assuming y is sufficiently differentiable. You do not have to compute the precise values of
the constants k1, k2, k3, . . . .

b) Use extrapolation applied to D(h) to develop an O(h4) accurate approximation of y
′
(x0).

Write out fully your new approximation of y
′
(x0) as a single difference formula which uses

nodes at x0 ± h and x0 ± 2h.

c) Show how one would derive an O(h6) accurate approximation of y
′
(x0). To do this,

look carefully at the form of the error expansion. Your work should show that the new
approximation would actually be O(h6) accurate. DO NOT actually write out the difference
formula with the nodes as you did in part (b).


