MASTER'S COMPREHENSIVE EXAMINATION STATISTICAL INFERENCE DEPARTMENT OF MATHEMATICS AND STATISTICS SPRING SEMESTER, 2015

Directions: Work 7 out of the following 10 problems.

1. Prove Student's Theorem: Let $X_1, ..., X_n$ be iid random variables each having a normal distribution with mean μ and variance σ^2 . Define the random variables

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

then

a) X̄ has a N(μ,σ²/n) distribution.
b) X̄ and S² are independent
c) (n-1)S²/σ² has a χ²(n-1) distribution.
d) The random variable T = X̄ - μ / S/√n has a Student's *t*-distribution with *n*-1 degrees of freedom.

- 2. Let $X_l, ..., X_n$ be a random sample from a distribution with pdf $f_x(x;\theta) = \theta^2 x e^{-\theta x}, x > 0, \theta > 0.$
- a) Find the MLE for θ .

b) Find the Rao-Cramer lower bound for estimating θ .

c) Is the MLE from part a. efficient? Show your work.

3. A random variable X is said to have a *Weibull*(λ , 2) distribution if it has pdf

$$f_X(x) = \frac{2x}{\lambda^2} e^{-(x/\lambda)^2}, \ x \ge 0$$

a) Find the sufficient statistic for λ using the Neyman factorization theorem. Verify your result using the definition of sufficiency.

b) Find the UMVUE for λ^2 (HINT: Use transformation).

c) Use the weak law of large numbers to find a consistent estimator for λ .

d) Use the delta method to derive the asymptotic distribution of a scaled version of your answer to c.

4. Let $X_1 \sim Gamma(1,2)$ and $X_2 \sim Gamma(2,2)$.

a) Find the joint distribution of $Y_1 = X_1 + X_2$ and $Y_2 = \frac{X_1}{X_1 + X_2}$.

b) Find the marginal pdf of Y₂. What kind of distribution is this?c) Find E(Y₂).

5. Verify that the distribution of the likelihood ratio statistic under normal $N(\mu, \sigma^2)$ sampling is exactly $\chi^2(1)$.

6. We are interested in randomizing one or more of the parameters in a parametric probability model. Consider randomizing the success parameter in the Bernoulli trials. Suppose that P_i has the beta distribution on the interval (0, 1) with positive parameters (α, β), which is known to be left and right parameters. Suppose that $X = (X_1, X_2, ..., X_n)$ is a sequence of indicator random variables with the property that X is a conditionally independent sequence given $P_i = p_i$, with

$$P(X_i = 1 | P_i = p_i) = p_i, p_i \in (0,1), i = 1,2, ..., n$$

Now let the number of successes in the first n trials be

$$Y_n = \sum_{i=1}^n X_i$$

Then,

- a) Find the expectation of Y_n and variance of Y_n .
- b) Find the joint pdf of P_i and Y_n .
- c) Find the marginal distribution of Y_n .
- 7. Let X be a random variable and $M_X(t)$ be the moment generating function (mgf) of X.
- a) Show that $M_X(t) \ge \exp[tE(X)]$, for all t for which the mgf is defined.
- b) Prove that $P(X \ge 0) \le M_X(t)$, for all $t \ge 0$ for which the mgf is defined.
- c) What are general conditions on a function h(t, x) such that

$$P(X \ge 0) \le E[h(t, X)],$$

for all $t \ge 0$, for which E[h(t, X)] exists.

- 8. Color blindness (or, more accurately, color vision deficiency) is an inherited condition that affects males more frequently than females. According to Prevent Blindness America, an estimated 8 percent of males and less than 1 percent of females have color vision problems.
- a) How large must a sample be if the probability of it containing a color-blind male is to be .95 or more?
- b) How large must a sample be if the probability of it containing a color-blind female is to be .95 or more?
- 9. Consider a sequence of RVs defined on the same probability space where

$$P(X_n = 1) = \frac{1}{n} = 1 - P(X_n = 0)$$

a) Show that X_n converges in distribution to a random variable X. Also find the CDF of X.

- b) Show that X_n converges in probability to a random variable X.
- 10. Let $X_1, ..., X_m$; $Y_1, ..., Y_n$ be iid as $U(0, \theta)$ and $U(0, \varphi)$, respectively. If n > 1, determine the UMVUE of θ/φ .