Instructions: Solve *seven* out of the *ten* problems given below.

Circle *seven* problems chosen: 1 2 3 4 5 6 7 8 9 10

September 13, 2014

- 1. Let $X_1, X_2, ..., X_n$ be a random sample of size *n* from a $N(0, \sigma^2)$ distribution.
 - a. Show that $S^2 = \sum_{i=1}^n X_i^2 / n$ is a complete sufficient statistic.
 - b. Show that $[X_1/S, X_2/s, ..., X_n/S]$ is independent of S^2 .
- 2. Let $X_1, X_2, ..., X_n$ be a random sample of size n from an Exponential distribution with pdf $f(x|\theta) = \theta \exp(-\theta x) I_{(0,\infty)}(x).$
 - a. Find the distribution of $T = \sum_{i=1}^{n} X_i$.
 - b. Find the UMVUE of θ .
- 3. Consider a sequence of random variables defined on the same probability space where

$$P(X_n = \frac{1}{n}) = P(X_n = -\frac{1}{n}) = \frac{1}{2} \text{ and } P(X = 0) = 1$$

- a. Show that X_n converges in distribution to a random variable X. Also find the cdf of X.
- b. Prove or disprove that $X_n \xrightarrow{p} X$.
- 4. Let $X_{1:4} < X_{2:4} < \cdots < X_{4:4}$ denote the order statistics of a random sample of size 4 from the Uniform $(0, \theta)$. Let the observed value of $X_{4:4}$ be X_4 . We reject $H_0: \theta = 1$ and accept $H_1: \theta \neq 1$ if either $x_4 > 1$ or $x_4 \leq 1/2$. Find the power function $\gamma(\theta)$ of the test, $\theta > 0$.
- 5. Verify that the distribution of the likelihood ratio statistic under $N(\mu, \sigma^2)$ sampling is exactly χ_1^2 .
- 6. Let $X_1, X_2, ..., X_n$ be a random sample from $N(0, \sigma^2)$.
 - a. Find the UMVUE for σ^2 .
 - b. Show that your answer to part a) is statistically independent to $X_{(1)}/X_{(2)}$, the ratio of the first two order statistics. Hint: You shouldn't have to work too hard here
- 7. Let $X_1, X_2, ..., X_n$ be a random sample from Uniform $[0, \theta]$, where $\theta > 0$. Let $Z_n = n(\theta X_{nn})$, where $X_{nn} = \max\{X_i\}$. Find the limiting distribution of Z_n .

Continue to #8 on the next page

8. Prove the followings:

Let (X, Y) be random variables, then

- a. E(X) = E(E(X|Y))
- b. Var(X) = Var(E(X|Y)) + E(Var(X|Y))

Now, using the above to solve the following question:

A quality control plan for an assembly line involves sampling n = 100 finished items per day and counting *Y*, the number of defectives. If *p* denotes the probability of observing a defective, which varies from day to day and is assumed to have a Beta distribution with ($\alpha = 2, \beta = 1$).

- c. What is the expected number of defectives for any given day?
- d. What is the standard deviation of number of defectives for any given day?
- 9. Solve the following two parts: (Hint: Use Complete Sufficient Statistic)
 - a. Suppose $X_1, X_2, ..., X_n$ are iid Poisson distribution with mean λ . Find the UMVUE of λ^2 and the UMVUE of $(\lambda 1)(\lambda 1)$.
 - b. Suppose $X_1, X_2, ..., X_n$ are iid Uniform $[0, \theta]$. Assume $n \ge 3$. Find UMVUE of θ^3 and UMVUE of $1/\theta^2$.
- 10. Solve the following two parts:
 - a. Let $X_1, X_2, ..., X_n$ be iid with one of two pdfs. If $\theta = 0$, (1) for 0 < x < 1

$$f(x|\theta) = \begin{cases} 1, & \text{for } 0 < x < 1 \\ 0, & \text{Otherwise} \end{cases}$$

If $\theta = 1$,

$$f(x|\theta) = \begin{cases} \frac{1}{2\sqrt{x}}, & \text{for } 0 < x < 1\\ 0, & \text{Otherwise} \end{cases}$$

Find MLE of θ .

b. Let the random element X be distributed as P_{θ} where $\theta \in \{\theta_0, \theta_1\}$. Let α and β denote the Type I and Type II error probabilities of a test for testing the simple null hypothesis θ_0 versus the simple alternative θ_1 . Instead of the Neyman-Pearson approach of maximizing $1 - \beta$ subject to a fixed α , another reasonable approach is to minimize a linear combination of α and β . Obtain the structure of a test $\phi^*(x)$, in terms of the likelihood ratio, that minimizes $2\alpha + \beta$. (Hint: The Neyman-Pearson lemma does not apply. Solve directly.)

STOP HERE!!