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By 

Aurahm Jo 
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Understanding the causes of specific fire regimes is critical for determining the 

long term impacts of fire on vegetation cover.  Numerous studies using 30 m Landsat 

data find a relationship between fire timing and vegetation type, but this relationship has 

not been observed at broader scales.  In West Africa land-cover patterns are 

heterogeneous and patchy at the landscape scale and annual fires often burn mosaic 

patterns.  It is well documented that where fires are known to be small and fragmented, 

the commonly used coarse-resolution MODIS data cannot give accurate estimates of 

burned area.  Moreover, their inability to capture the spatial pattern of land-cover types 

burned presents a mixed pixel problem, because vegetation and agricultural fields vary on 

a scale less than 500 m2.  To overcome these issues, this study uses medium-resolution 

Landsat data to map land-cover.  Landscape ecological indices are used to observe spatial 

patterns at 500 m scale. 
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CHAPTER 1 

INTRODUCTION 

Savannas are a unique biome, defined by a coexistence of grasses and scattered 

trees (Scholes and Archer 1997).  African savannas are the most frequently and 

extensively burned regions in the world (Giglio et al 2010).  From an ecological 

standpoint, fires in savannas are not only normal, but necessary.  Frequent disturbances, 

such as fires or grazing, temporarily lead to favorable conditions for trees or grasses, 

preventing one plant type from outcompeting the other (Jeltsch et al 2000; Laris 2011; 

Sankaran et al 2005).  Fires also have climatic impacts (Archibald et al 2010).  They emit 

greenhouse gases such as carbon dioxide, methane, nitrous oxide, and particulates 

(Koppman et al 2005), cause vegetation cover changes (Louppe et al 1995), and suppress 

growth of woody vegetation, which stores carbon (Bond et al 2005).   

Responding to the rising concerns over fires in African savannas, many studies 

have focused on identifying drivers of fire regimes.  The fire regime of an area is defined 

by its type, intensity, size, return interval, seasonality, and spatial pattern (Christensen 

1985; Agee 1993; Bond and Keeley 2005).  Major drivers can be clustered into four 

categories: landscape pattern, anthropogenic factors, weather and climate, and fuel 

structure and flammability.  Landscape variables defining composition (land-use and 

land-cover type) or proximity to human influence affect fire occurrence and patterns 

(Moreno et al 2011).  The intermixing of woodland and agricultural land has been shown 
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to influence a fire regime because agricultural fields can act as firebreaks (Lloret et al 

2002; Loepfe et al 2010, 2011).  Fires have differentially burned certain land-use and 

land-cover types in the Mediterranean (Moreira et al 2001, 2009; Nunes et al 2005; 

Bajocco and Ricotta 2008), as well as in other regions (Cumming 2001; Vázquez and 

Moreno 2001; Mermoz et al 2005).   

Interannual climate variation or meteorological patterns are important 

determinants of yearly burned area or fire-size patterns in many environments (Littell et 

al 2009; Lutz et al 2009; Sá et al 2010).  There is a growing concern that climate change 

will cause larger and more catastrophic fires around the world.   

Anthropogenic factors including fuel fragmentation, fire suppression, population 

density, agriculture proportion, and exotic species play a major role influencing fire 

regimes throughout the world (Brown et al 2004; Duncan and Schmalzer 2004; Martinez 

et al 2009; Sá et al 2010).  Fuel structure and flammability have been proposed as 

alternative drivers of fire regimes especially in California shrublands (Minnich 1983; 

Keeley et al 1999; Keeley and Zedler 2009).  While fuel moisture determines plant 

flammability (availability to burn), fuel structure refers to the amount and connectivity of 

burnable resources.  Some authors claim that a reduced number of small and mid-sized 

fires result in an accumulation of fuel that may lead to catastrophic fires under extreme 

weather conditions (Pausas and Paula 2012; Minnich 1983, 2001; Piñol et al 2005, 2007; 

Shang et al 2007).  Others hold that, in some ecosystems at least, large fires are not 

dependent on the age classes of fuels (Loepfe et al 2011; Moritz 2003; Moritz et al 2004).  

The spatiotemporal patterns of fires themselves can influence fire behavior and burned 

area.  As several authors have shown, a regime of patch or seasonal mosaic fires creates a 
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landscape fragmented by early and late fires that prevents large sweeping fires and has 

specific ecological and management benefits (Laris 2011; Parr and Brocket 1999). 

Fire is thus a landscape-scale phenomenon that depends on connectivity of a 

flammable fuel load across space and time.  In savanna ecosystems, the fire regime 

strongly affects tree establishment and growth: in particular, the timing of fires is a 

critical determinant of fire intensity and its impact on trees (Louppe et al 1995; Furley et 

al 2008).  In areas such as the African savannas, which have high fire frequency, 

landscape and fire patterns are changing continuously over time, making fire mapping a 

challenge.  Remote sensing offers one of the few means to provide accurate data on 

savanna fire regimes. 

While global fire products are widely available and provide timely data on 

African fire regimes, they are not without serious inaccuracies.  Because of the highly 

fragmented landscape in savannas, scale of analysis is critical in detecting the 

spatiotemporal patterns of burning in savannas.  Researchers have often relied on global 

products derived from Moderate Resolution Imaging Spectroradiometer (MODIS), whose 

high temporal resolution (daily) is offset by coarse spatial resolution (500 m or 1 km) 

(e.g., Archibald et al 2009, 2010; Sá et al 2010).  In savannas, where fire is a frequent and 

widespread phenomenon, use of coarse-resolution products poses a trade-off for analysts: 

while most fires larger than the pixel resolution are mapped, those smaller are most often 

missed.  This phenomenon is known as “low-resolution bias” (Boschetti et al 2004, 

2013).  As Laris (2005) demonstrated, use of coarse-resolution data is problematic in 

African savannas where early-season fires tend to be fragmented and smaller than the 

pixel size.  MODIS burned area data may further underestimate burned areas because of 
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the conservative algorithm used to create the data product: partially burned pixels are 

classified as unburned (Boschetti et al 2013; Laris 2005).  Finally, as Randerson et al 

(2012) demonstrated, the error associated with the burned area products for African 

savannas is large.  MODIS active fire data also underestimate the number and size of 

fires, as the satellite may not pass over when the burning occurs.  Further, even if satellite 

timing is ideal, active fires may not be detected because of clouds or optically thick 

smoke (Giglio 2007, Roy et al 2008, Smith and Wooster 2005), or if fires are too small or 

not hot enough (Giglio et al 2003, Schroeder et al 2008).  Active fire detections have 

been found to underestimate burned areas in savannas where fires progress rapidly across 

the landscape (Boschetti and Roy 2009; Roy et al 2008).   

Compounding these issues in many savannas is burning patterns created by 

people: such patterns are highly fragmented and can be undetectable using coarse-

resolution data.  When rural inhabitants in savannas set fires, they tend to make decisions 

at a landscape scale (on the order of hectares) because vegetation varies at this scale 

(Laris 2011; Duvall 2011).  Laris (2005) compared the burned area estimates of Landsat 

data at the 30 m pixel to products (SPOT-Vegetation  and ATSR) derived from coarse-

resolution satellites at the 1 km pixel, finding that Landsat data show a significantly 

higher percentage of the study area burned.  Caillault et al (2014) found similar results for 

Burkina Faso. 

Additionally, MODIS data are likely to be subject to mixed pixel problems.  

Though daily MODIS data are readily available with vegetation types already classified, 

changes in land-cover types, unlike burned area, do not occur daily.  Therefore, for land-

cover mapping, sacrifice of spatial resolution for temporal resolution often is not 
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appropriate.  Land-cover types are much more difficult to determine accurately at the 500 

m or 1 km pixel of MODIS than at the 30 m pixel (such as with Landsat); multiple types 

of land cover might be included but not differentiated in a single MODIS pixel.  

In complex and heterogeneous landscapes such as a savanna (Duvall 2011), 

landscape pattern can play a critical role in determining the spatiotemporal patterns of 

fire; therefore, landscape ecological indices should hold potential for linking land-cover 

patterns to fire regimes.  As has been demonstrated, landscape pattern plays a critical role 

in determining whether and how a fire burns through a landscape—a classic case of 

pattern influencing ecological process (Turner 1989; McGarigal 2015; Midha and 

Mathur, 2010; Raines 2002).   

Landscape indices, developed to quantify ways in which pattern affects ecological 

processes (Pickett and White 1985, Turner 1989), help to show the relationship between 

landscape patterns and fire regime dynamics.  Landscape characteristics are spatially 

variable, and fire spread is not independent of them  (Moreno et al 2011).  In helping to 

quantify relationships between landscape characteristics and fire regimes, landscape 

indices can be used to consider elements within a 500 m block, such as a MODIS pixel, 

as related or spatially dependent.   

The purpose of this thesis is to analyze the effects of vegetation types and their 

landscape patterns on the three key parameters of the fire regime—timing, frequency, and 

variability of fires in southern Mali.   

The study is driven by four key research questions: 

1.  How does landscape pattern affect the fire regime in an African savanna? 
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2.  Do particular types of vegetation cover (e.g., short grass savanna or rotational 

agriculture) have unique effects on specific aspects of the fire regime? 

3.  Which common landscape ecological indices have the most potential for 

linking land cover and fire regime? 

4.  What potential do landscape indices offer for resolving the issue of scale in use 

of coarse-resolution fire and land-cover data? 

To address these questions, my approach expanded upon earlier efforts to link fire 

regimes to land use and cover in savannas.  First, a unique data set was developed by 

combining MODIS and Landsat data.  Use of both sources contributed to a more robust 

set of data to analyze the fire regime: daily MODIS data provide accurate temporal 

information, and less frequent Landsat data with higher spatial resolution improve 

classification accuracy of primary determinants (type and pattern of vegetation and land 

cover).  Second, landscape indices were used to characterize vegetation patterns for each 

500 m MODIS pixel by co-locating patches of 30 m pixels of classified Landsat data and 

transforming them into landscape indices to characterize the spatial pattern.  Third, to 

better understand dynamics of landscape patterns over time, a typology of landscape 

forms was created by identifying vegetation type (short grass savanna, agriculture/short 

fallow, savanna/long fallow, and woodlands).  Finally, relationships between key factors 

(vegetation type, pattern of agriculture, landscape indices)  and the fire regime in 

southern Mali were examined to test the first tenet of landscape ecology—spatial 

patterns of the landscape affect ecological processes (Turner 1989)— and to better 

understand the fire regime.   
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CHAPTER 2 

METHODS 

Study Area 

The study area is located in southern Mali and northern Guinea, the southern edge 

of the Soudan savanna belt (Figure 1).  Its spatial extent corresponds to the Landsat scene 

WRS-199/52 (Lon: -7° 17'- -9° 2', Lat: 10° 41'-12° 28').  The study area (32,927 km2) is 

contained within this scene boundary and is smaller than the boundary because of scene 

shifting over the 11-year study period. 

 

 
 

FIGURE 1.  Study area.  The study area falls within the spatial extent of a Landsat scene 

(199/52) that borders Guinea and Mali (ESRI 2009). 
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This region is a mesic savanna with an average annual rainfall between 1,000 and 

1,200 mm (Nasi and Sabatier 1988) and relatively cool and hot dry seasons characterized 

by fires: a cooler dry season from October to February and a hot and dry season from 

February to June.  The dry season is followed by a rainy season that runs from June to 

October.  Although rainfall is sufficient to support the growth of closed canopy tree 

cover, disturbances such as fires adversely impact their development.  People set fires to 

the landscape to protect their agricultural fields from larger fires.  Where and when fires 

are set is determined by the vegetation (Laris 2002). 

The vegetation in this study area is categorized as southern Soudanian savanna 

and comprised mainly grasses, trees, and shrubs.  Agricultural fields left fallow for short 

period of time (less than five years) are mainly composed of annual grasses mixed with 

frequently farmed fields (Laris 2013).  Short grass savannas are dominated by short 

annual grasses with few widely scattered trees (Nasi and Sabatier 1988).  Because short 

grass savannas grow on poor soils, they are not cultivated.  Fires are set in these short 

grasses earlier in the fire season because they are the first to dry and have uneven 

distribution throughout the landscape.  Thus, fires in these short grasses are small and are 

naturally extinguished when they reach vegetation that is not as dry.  These early fires 

protect the more productive agricultural lands from larger fires because an area typically 

burns only once in a season. 

More fertile soils are characterized by more dense woody vegetation and tall 

perennial grasses, which hold more moisture than the annuals.  Perennial grasses also 

grow in agricultural areas that have been left fallow for a long time (longer than five 

years).  Agriculture in these areas tends to take place once the vegetation has been fallow 
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for a sufficient period of time (longer than five years).  To fragment the landscape and 

prevent larger fires, areas containing taller perennial grasses, are burned before harvest in 

the agricultural areas.  Woodlands are the last to burn because trees hold the most 

moisture, but only juveniles burn because fully grown trees become immune to the low-

intensity fires. 

Fire Regime Data 

Because the fire regime markedly affects tree establishment and growth in 

savanna ecosystems, timing of fires is especially important.  Fire intensity increases as 

the season progresses and vegetation dries.  In this research, data were obtained from 

October to May.  Although the dry season lasts until June, fires typically do not occur so 

late in the season, so data for June were not included.  The data used in this research were 

obtained from Landsat imagery (2002, 2006, and 2013), MODIS burned area imagery 

(2003-2014), and MODIS active fire point data (2003-2014). 

Variables used to characterize the fire regime were derived from all three data 

sources: (1) timing of the fire; (2) frequency of the fire; and (3) variance of average burn 

date.  The unit of analysis is the 500 m pixel (250,000 m2) of the MODIS burned area 

data.  Each Landsat pixel has a resolution of 30 m (900 m2);  Landsat data were 

aggregated to the spatial extent of the 500 m MODIS pixels.   

All of the datasets provide burned dates as Julian days.  Each dataset was 

modified, setting October 1st to 1 to indicate the start of the season (rather than January 

1st).  The largest possible value was set to 243 or May 31st, which was selected as the end 

of each fire season. 
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In MODIS data there are two major fire detection methods—burned area and 

active fire.  Burned area products are created using a burned area detection method, 

which delineates burned areas by detecting spectral contrast between vegetation modified 

by fires and vegetation unaffected by fires.  A reflectance threshold is set to distinguish 

burned and unburned areas.  Active fires are mapped by detecting the thermal signature 

or high temperature of the flaming front of a fire. 

Each dataset has a different range of burn frequency values.  For all datasets, a 

pixel typically burns once in a season, so MODIS datasets theoretically have a maximum 

frequency value of 11.  A small number of cells in these datasets burned more than once, 

resulting in values of 13 (MODIS burned area) and 12 (MODIS active fire).  Landsat can 

have a maximum frequency of 300 because 100 50 m pixels fit within a 500 m pixel, 

meaning that for each season, a 500 m pixel can experience 100 individual burns;  we 

have three seasons of fire data for Landsat.  Estimating the average burned date per 500 

m pixel required two steps: (1) Landsat data processing to create burned area maps and 

(2) data aggregation. 

Landsat Processing 

Landsat images cover three fire seasons: 2002, 2006, and 2013.  Data for the first 

two were created using Landsat 4 Thematic Mapper (TM) and Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+) images by Laris (2013).  For the most recent fire season, 

images from TM and Landsat 8 Operational Land Imager and Thermal Infrared Sensor 

(OLI and TIRS) were used.  The TM, ETM+, and OLI imagers provide identical 

bandwidths and pixel resolutions, enabling long-term monitoring.  
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The Landsat burn scar maps, which contain burn date information, were 

combined into one image from which average burned dates, burn frequency, and standard 

deviation of burned dates were derived.  The burned area maps were created as follows 

(Laris 2011): 

1) Using ENVI version 5.0 (Exelis Visual Information Solutions, Boulder, 

Colorado), an unsupervised clustering algorithm (ISODATA) was applied to six bands of 

Landsat images (2-7 for OLI; 1-5 and 7 for TM and ETM+).  The clustering algorithm 

grouped 30 m pixels into 25 spectral classes.  2). Each class was visually assessed as 

either burned or unburned by comparing to a false-color image (5-4-3 band combination).  

3) Pixels burned in prior months were removed, since areas burned once during the fire 

season typically do not burn again, although the burn scar may remain visible.  This 

approach resulted in one 30 m resolution image per season.  4)  A 4 × 4 majority filter 

was applied to remove lone pixels, i.e. those different from adjacent pixels; and 5) water 

bodies were masked.  Each 30 m pixel was identified as either burned or unburned.  The 

burned pixels contain the numerical burn date value (Julian dates were reassigned so that 

October 1st became “1” with a maximum date of 243 corresponding to May 31). 

Landsat Data Aggregation 

The three 30 m Landsat images containing the burn date information on a per-

pixel-basis were aggregated into three 500 m images corresponding to the footprint of the 

MODIS dataset.  The average, frequency, and standard deviation images were generated 

as follows: 

Frequency image: Each Landsat image was resampled to 50 m (using the 

resample tool in ArcGIS).  A value of 1 was assigned to each burned area pixel.  This 50 
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m binary frequency image was used to derive a 500 m frequency image, using block 

statistics whereby the 500 m pixel was attributed with the sum of the burned areas in the 

corresponding 100 pixels from the 50 m input image.  The resulting three frequency 

images at 500 m resolution, corresponding to the 2002, 2006 and 2013 Landsat seasons, 

were summed to yield a total frequency image at 500 m resolution.  

Average image: Each Landsat image was resampled to 50 m (using the resample 

tool in ArcGIS) using nearest-neighbor interpolation method.  Each 50 m pixel has a 

burned date value or zero for unburned pixels.  This 50 m burned date image was used to 

derive a 500 m total burn date image, using block statistics whereby the 500 m pixel was 

attributed with the sum of the burned dates in the corresponding 100 pixels from the 50 m 

input image.  The total burned date for each of the three seasons was summed into a 

single total burn date image at 500 m resolution.  The total burn date was divided by the 

total frequency image to derive an average burn date image, representing the overall 

average burn date for the three seasons.  

The standard deviation of burned dates for each 500 m aggregate pixel was 

calculated using equation (1): 

 

∑ √
(𝑋𝑏𝑢𝑟𝑛𝑒𝑑−𝑋𝑎𝑣𝑔)

2

𝑛−1

𝑛
𝑖=1                                                  eq (1) 

where 

Xburned = per pixel burned date preprocessed to convert “0” values to “no data” 

Xavg =  average burned date for 500 m pixel resampled to 50 m for calculation 

purposes 
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N = frequency for 500 m pixel resampled to 50 m for calculation purposes 

(maximum corresponding to the 100 50 m cells for three seasons)   

If the standard deviation of average burn dates per 500 m pixel is small, a pixel 

would burn around the same time for each fire season.  The resulting three grids at 500 m 

were further summarized to calculate the overall averages of the average burn date, burn 

frequency, and standard deviation of the burned dates across the entire study area.  

MODIS Burned Area Processing 

MODIS burned area data are provided monthly at 500 m resolution.  For each 

burned pixel, the approximate Julian day of burning is reported.  The downloaded images 

were clipped to the extent of the study area.  

The frequency image was calculated by reassigning burned pixels (those 

containing dates) with a value of 1 and summing all the monthly images for the 11-year 

period (2003-2014).  The average burned date image was calculated by summing all the 

monthly images with burned dates (Julian dates were reassigned so that October 1st 

became “1” with a maximum date of 243 corresponding to May 31), then dividing by the 

frequency image.  The standard deviation of burned dates image was calculated following 

equation 1 where  

Xburned = per pixel burned date preprocessed to convert “0” values to “no data” 

Xavg = average burned date 

N = 13 (burn frequency grid)   

MODIS Active Fire Processing 

MODIS active fire data are provided as point shapefiles where each point 

represents the date of the fire (Julian dates were reassigned so that October 1st became 
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“1” with a maximum date of 243 corresponding to May 31).  The points were 

downloaded and clipped to the study area.  A series of spatial joins was required to 

aggregate the point data to 1 km polygons while retaining the detailed data contained in 

the original point file (Figure 2).  The average, frequency, and standard deviation for 

MODIS active fire were calculated: 

 (1) The downloaded and clipped points were converted to an image at a 1 km 

pixel resolution (corresponding to the resolution of the MODIS active fire imagery).  (2) 

This 1 km image was converted to a polygon shapefile for use in the subsequent spatial 

joins.  (3) The original clipped points were spatially joined to the 1 km polygons, 

resulting in 1 km2 polygons with an attribute table containing the sum of the fire dates 

and frequency of fire dates.  From this the average fire date was calculated.  If, for 

example, the sum of the modified Julian dates was 540, and the frequency of burn was 4, 

the average fire date would be 135 (equivalent to Feb 12).  A pixel could have two points 

for a given day if there were active fires in the morning and afternoon, detected by Terra 

and Aqua satellites, respectively.  

(4) The information derived from this polygon file was then associated with the 

original clipped point file, using intersect to spatially join the data from the polygon back 

to the point file.  The resulting  point file retains the original fire dates but is enhanced 

with the frequency and average burn date associated with each point.  From this 

information, a difference squared field could be calculated from the modified Julian date 

and average burn date.  

(5) The point shapefile resulting from the spatial join/intersect (step 4) was 

rejoined to the spatially joined polygons (step 3) resulting in a polygon shapefile that 
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enabled the calculation of the standard deviation of actual burn date for each 1 km2 area.  

In this shapefile, the difference squared field summed during the spatial join process 

(numerator) and the sum of frequency (denominator) were used to calculate the standard 

deviation of burn date for each polygon. 

 

 
 

FIGURE 2.  Calculating average fire dates, fire frequency, and standard deviation of fire 

dates for MODIS active fire dataset 

 

 

(6) The average, frequency, and standard deviation fields in the polygon shapefile 

(step 5) were converted  to 3 image grids at 1 km resolution.  (7) These were each 

resampled to 500 m images to correspond to the MODIS burned area resolution. 
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Land-cover data 

Selection of appropriate vegetation types that determine the fire regime is based 

on a conceptualization of the drivers of fire in southern Mali.  Drivers include agricultural 

fields and vegetation type (i.e., woodlands, savanna/long fallow, agriculture/short fallow, 

and short grass savanna).  All are thought to affect spatial extent and seasonality of fires 

(Laris, 2005; 2011).  Though additional environmental factors in previous studies 

included rainfall, wind speed, and relative humidity at the time of burning, they are not 

included here because of lack of variation across the study area (e.g., similar quantity of 

rainfall) and data availability.  

The land-cover data used in this analysis were obtained from an image developed 

by Laris (2011), using three November images from the modern period (2000, 2002, and 

2006), and three from the historical period (1986, 1988, and 1991).  The land-cover map 

originally had six land-cover types: (1) water, (2) woodlands, (3), savanna/long fallow, 

(4) short grass savanna, (5) agriculture/short fallow, and (6) settlements.  For the 

purposes of this analysis, water and settlement classes were excluded because these 

classes are not flammable (Figure 3).  Although agricultural fields are often considered 

non-flammable, the short grasses that emerge when they are fallow are flammable.  

Therefore, for the purposes of this analysis, areas in the land-cover dataset classified as 

agriculture/short fallow were included as flammable. 

There are three landscape scales: landscape, class, and patch.  For the purposes of 

this study, “landscape” is used to refer to each MODIS pixel because the unit of analysis 

for all datasets is the 500 m pixel. 
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FIGURE 3.  Land-cover map (30 m)  

 

 

The “class” scale is represented by the vegetation type contained in the land-cover 

dataset.  A patch is a group of connected pixels that belong to one vegetation class.  For 

example, in Figure 4, the MODIS pixel with an ID of 1 has only one patch that belongs to 

a non-flammable class.  Figure 4 shows classified, 50 m Landsat pixels within four 500 m 

MODIS pixels.  In this figure, four MODIS pixels (landscape) are shown with the 

underlying vegetation classes (resampled from the 30 m Landsat to 50 m resolution) and 

patches become evident. 
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FIGURE 4.  Scales of landscape indices.  Numbers 1-4 refer to the MODIS 500 m pixel.  

There are 4 land-cover classes identified from the LANDSAT data at 50 m pixel 

resolution (resampled from 30 m to 50 m). 

 

 

Because characterizing the spatial heterogeneity of the various land-cover types 

within each MODIS pixel could explain why early-season fires tend to be more 

fragmented than late-season fires in southern Mali, landscape indices were developed to 

measure the spatial pattern created by the various land-cover types.  For each pixel, 

FRAGSTATS (McGarigal et al 2012) was used to analyze two different levels of spatial 

pattern metrics: class-level index (CLI) and Landscape-level Index (LLI).  The CLI 

represents the spatial distribution and pattern of a single vegetation type contained in a 
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MODIS pixel.  The LLI calculates a numeric value for the spatial pattern created by all 

the vegetation types present within a MODIS pixel. 

In both the CLI and LLI, four landscape indices were calculated (Table 1).   

 

TABLE 1.  Descriptions of Class-Level Indices and Landscape-Level Indices 

 

Indices Explanation 

CLI (short grass savanna, agriculture/short fallow, savanna/long fallow, woodlands) 

Proportion of area Proportion of landscape area for each vegetation type was 

calculated as a simple measure of amount of area covered by 

each vegetation type 

Shape index Shape index measures shape complexity of a patch compared to 

a square shape of the same size 

Largest patch index Largest patch index is the percentage of the total landscape area 

occupied by the largest patch of a class 

Patch density Patch density is the number of patches in a land-cover type per 

100 hectares. 

LLI (all vegetation types) 

Largest patch index Largest patch index is calculated to note the size of largest patch 

in the landscape regardless of vegetation type 

Patch richness Patch richness is simply the number of land-cover types present 

in the landscape. 

Splitting index Splitting index is equal to 1 when the landscape consists of a 

single patch.  Splitting index increases as the landscape is 

increasingly subdivided into smaller patches and achieves its 

maximum value when the landscape is maximally subdivided; 

that is, when every cell is a separate patch. 

Patch density Patch density is calculated to note the number of patches in a 

landscape. 

 

 

In the CLI these included (1) proportion of area; (2) shape index; (3) largest patch 

index; and (4) patch density.  In the LLI these included: (1) largest patch index; (2) patch 

richness; (3) splitting index; and (4) patch density (McGarigal 2015). 

In the CLI the proportion of landscape area for each vegetation type was 

calculated as a simple measure of amount of area covered by each vegetation type.  Shape 
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index measures shape complexity of a patch compared to a square shape of the same size.  

The largest patch index is the percentage of the total landscape area occupied by the 

largest patch of a class.  Patch density is the number of patches in a land-cover type per 

100 hectares.  

In the LLI the largest patch index refers to the percentage of landscape area 

covered by the largest patch in the 500 m pixel, regardless of the vegetation type.  Patch 

richness is simply the number of land-cover types present in the landscape; this metric 

was selected to note the diversity of land-cover types present in each 500 m pixel, 

regardless of the size or shape of the patches.  Splitting index is equal to 1 when the 

landscape consists of a single patch.  Splitting index increases as the landscape is 

increasingly subdivided into smaller patches and achieves its maximum value when the 

landscape is maximally subdivided; that is, when every cell is a separate patch.  Patch 

density is calculated to note the number of patches in a landscape. 

To allow the boundaries of the MODIS burned area pixels and Landsat pixels to 

match, the land-cover map was resampled from 30 to 50 m resolution.  Subsequently, the 

50 m land-cover map was used as input for FRAGSTATS.  In FRAGSTATS, the uniform 

tiles method was used with a tile side length of 500 m corresponding to the MODIS 

burned area pixels.  The desired LLI and CLI were selected for processing in 

FRAGSTATS, resulting in two text files and one image (with the tile id information).  

The text files summarize the class level (short grass savanna, agriculture/short fallow, 

savanna/long fallow, and woodlands; Table 2) and landscape-level indices (all vegetation 

in the pixel; Table 3).  The tile ID (from MODIS) was used to join the CLI and LLI 

indices to each MODIS pixel. 
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TABLE 2.  FRAGSTATS Results for Class-Level Indices 

 

Tile 

ID 
Type 

Percentage 

cover 

Shape 

index 

Largest patch 

index 

Patch 

density 

1 Savanna   9% 1.83   9%   4.07 

1 Woodlands   4% 1.00   4%   4.07 

1 Agriculture   6% 1.00   6%   4.07 

2 Savanna 11% 1.12   4% 16.31 

2 Short grass   8% 1.00   6%   8.15 

2 Woodlands 15% 1.62 15%   4.07 

2 Agriculture   4% 1.00   2%   8.15 

 

 

Each pixel could have a maximum of 5 cover types (i.e., 3 cover types are in 

MODIS pixel 1 in Table 2).  For each, there are four indices (i.e., percentage cover, shape 

index, largest patch index, and patch density for Table 2).  MODIS pixel 1 in Tables 2 

and 3 has three cover types, so there are 12 CLIs and 4 LLIs for this pixel.  Spatial 

information was assigned to the information contained in text files by converting the tile 

id image to points and joining the text files to the points by tile id.  Five copies of the 

point shapefile were created to join each of the landscape and four land-cover types to tile 

id points separately.  Table 2 shows CLI values for two MODIS pixels.  Because there 

are multiple rows of information for a single MODIS pixel, the CLI text file generated by 

FRAGSTATS was separated by vegetation type and each of the four vegetation type CLI 

text files was joined to a point shapefile.   

The LLI text file from FRAGSTATS was also joined to another point shapefile so 

that there is one row per MODIS pixel.  LLI reveals the general landscape structure. For 

example, for the largest patch index, the value for the largest patch in the pixel regardless 

of vegetation type is shown–savanna/long fallow with 9% for MODIS pixel 1 (Table 3). 
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TABLE 3.  FRAGSTATS Results for Landscape-Level Indices 

 

Tile ID Largest patch index Patch richness Split index Patch density 

1   9% 3 75.18 12.23 

2 15% 4 32.67 36.71 

 

 

Statistical Test 

Medians of fire regime measures (average frequency, variability of fires) were 

compared between vegetation types using Mann-Whitney test due to non-normal 

(skewed) distribution (Wilcoxon 1945; Mann and Whitney 1947).  To examine normality 

of the data, Skewness-Kurtosis test was used (D’Agostino et al 1990; Royston 1991). 
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CHAPTER 3 

RESULTS 

This research examined the impact of vegetation type and landscape structure on 

fire regime at 500 m pixel resolution.  Effects of changes in CLIs on fire regime variables 

(average burned dates, frequency, and standard deviation of  burned dates) were assessed 

to understand how landscape structure and vegetation types affect the fire regime; LLIs 

were used to understand the effect of the general landscape structure on the fire regime. 

Comparing average burned dates from Landsat and MODIS 

Average burn date enabled detection of the temporal nature of burning across the 

savanna, as well as how the burned date manifests in different datasets.  In Figure 5, 

descriptive statistics of average burned date by dataset are graphed.  A boxplot splits the 

data into quartiles from the first quartile, median, to the third quartile.  Two vertical lines, 

extending from the bottom and top of the box, show the smallest average burned date 

from the first quartile and the largest average burned date from the third quartile.  When 

the data are skewed (p <0.001 of Skewness-Kurtosis test), median is preferred over mean.  

Landsat had the earliest average burned dates across pixels (median Jan 1), followed by 

MODIS active fire (Jan 8, p<0.001) and MODIS burned area (Jan 18, p<0.001).  The 

dotted lines linking 25th, 50th (median), 75th, and 95th percentile values across datasets 

clearly show this tendency. 
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FIGURE 5.  Box plots of burned dates (500 m pixel) by dataset 

 

Note: During the 11-year study period, a total of 109,905 MODIS pixels had at least one 

land-cover type and one burned date (Landsat, MODIS burned area, or MODIS active 

fire) per pixel. 

 

 

Landsat Fire Regime 

To visualize characteristics of the fire regime, boxplots by vegetation type are 

presented in Figures 6, 7, and 8, for average burned date, frequency of fires, and 

variability of average burned dates, respectively.  Frequency describes the amount of 

times a pixel burned (a pixel could burn a maximum of 3 times—one per year).  The 

standard deviation (SD) represents the overall variability between burned dates over the 

three years. 

Figure 6-A compares the distribution of the average burned date between two 

areas: area with lower percentage cover of short grass (1st quartile) vs. area with higher 
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percentage cover (4th quartile).  In areas with more short grass savanna (higher 

percentage cover), fires (median December 16) tended to occur early, compared to 

January 9 in the area with less short grass savanna (p<0.05). 

 

 
A. Short grass savanna B. Agriculture/short fallow 

  
C. Savanna/long fallow D. Woodlands 

  

 

FIGURE 6.  Box plots of average burned dates for 1st and 4th quartile of percentage cover 

of (a) short grass savanna, (b) agriculture/short fallow, (c) savanna/long fallow, and (d) 

woodlands.   
* indicates statistical difference in average burned dates between lower and upper quartile 

at a 5% level of significance based on Mann-Whitney test. 
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For agriculture/short fallow, average burned dates are not statistically different by 

proportion of agriculture/short fallow in the resolution of a MODIS pixel (p=0.11, Figure 

6-B).  Fires were likely to be later in areas with higher percentage of savanna/long fallow 

(median January 8) and woodlands (January 9), compared to December 18 and December 

28 in areas with lower percentage of each, respectively, at a 5% level of statistical 

significance.  

Over the 11-year period (three seasons) associated with the Landsat data, burning 

occurred 234 times in areas with higher percentage of short grass savanna, compared to 

157 times in areas with lower percentage (p<0.001; Figure 7A). 

 

 
A. Short grass savanna B. Agriculture/short fallow 

  
 

FIGURE 7a-b.  Box plots of burn frequency for 1st and 4th quartile of percentage cover of 

(a) short grass savanna and (b) agriculture/short fallow 

* indicates statistical difference in frequency between lower and upper quartile at a 5% 

level of significance based on Mann-Whitney test. 
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Areas with higher percentage of agriculture/short fallow burned less frequently: 

(147 vs. 224 times, p<0.001), while areas with high percentage of savanna/long fallow 

burned more frequently (218 vs. 164 times, p<0.001). In woodlands, fires occurred more 

frequently over three seasons (201 vs. 196 times, p<0.001). 

 

 
C. Savanna/long fallow D. Woodlands 

  
 

FIGURE 7c-d.  Box plots of frequency of fires for 1st and 4th quartile of percentage cover 

of (c) savanna/long fallow and (d) woodlands 
* indicates statistical difference in frequency between lower and upper quartile at a 5% 

level of significance based on Mann-Whitney test. 

 

 

To see the variability of burned dates by vegetation type, one can check the 

vertical distance between the smallest and largest SD, rather than median value of SD 

(Figure 8).  In areas with higher percentage of short grass and savanna-long fallow, fires 

spread within 91 to 94 days, compared to 101 to 102 days in areas with lower percentage; 

this difference indicates fires that were more regular. 
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A. Short grass savanna B. Agriculture/short fallow 

  

C. Savanna/long fallow D. Woodlands 

  
 

FIGURE 8.  Box plots of variability of burned dates for 1st and 4th quartile of percentage 

cover of (a) short grass savanna, (b) agriculture/short fallow, (c) savanna/long fallow, and 

(d) woodlands.   
* indicates statistical difference in SD between lower and upper quartile at a 5% level of 

significance based on Mann-Whitney test. 

 

 

Areas with higher percentage of agriculture/short fallow (upper quartile) showed 

the opposite tendency: fires that were less regular (range of 101 vs. 94).  For woodlands, 
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there were no differences in variability of burned dates regardless of percentage of cover 

area. 

The combined findings in Figures 6, 7, and 8 indicate that 1) short grass savanna 

burned more consistently and frequently earlier in the season; 2) agriculture/short fallow 

burned less consistently and frequently, but showed little difference in median value of 

average burned date; 3) in areas of savanna/long fallow, late fires tended to be more 

regular and frequent; and 4) in areas with woodlands, late fires tended to be more 

frequent.  This analysis of Landsat data demonstrates the relative difference in timing and 

variability of burned dates, as well as frequency of fires, by vegetation type.  

Landscape Indices 

Descriptive statistics for CLI by vegetation type and LLI (Table 4) depict the full 

range of values for these indices across the entire study area:  

Proportion of area: Savanna/long fallow was the dominant vegetation type 

(median of 42%), followed by agriculture/short fallow (21%), short grass (18%), and 

woodlands (5%).   

Largest Patch Size:  Savanna/long fallow patches were larger (median of 34%) 

than patches of other vegetation types, while woodlands patches were smaller (3%). 

Patch Density: Within a 500 m pixel, there were more agriculture/short fallow 

and short grass savanna patches than other vegetation types.  

Shape Index: Woodlands were likely to have square-shaped patches (smallest 

shape index), while savanna/long fallow area were likely to have non-square-shaped 

(largest shape index) patches. 
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TABLE 4.  Descriptive Statistics for Class-Level Indices 

 

Class-level indices Median Mean Min Max 

Short grass savanna (N=100,970)     

Proportion of area (%) 18.0 24.5 1.0 100.0 

Shape index 1.4 1.5 1.0 4.3 

Largest patch index (%) 10.0 19.8 1.0 100.0 

Patch density 12.2 13.4 4.1 57.1 

Agriculture/short fallow (N=98,052)     

Proportion of area (%) 21.0 23.9 1.0 98.0 

Shape index 1.5 1.6 1.0 4.1 

Largest patch index (%) 11.0 17.4 1.0 98.0 

Patch density 16.3 15.3 4.1 57.1 

Savanna/long fallow (N=108,469)     

Proportion of area (%) 42.0 42.2 1.0 100.0 

Shape index 1.9 2.0 1.0 4.3 

Largest patch index (%) 34.0 36.5 1.0 100.0 

Patch density 12.2 12.4 4.1 53.0 

Woodlands (N=69,293)     

Proportion of area (%) 5.0 9.8 1.0 100.0 

Shape index 1.1 1.2 1.0 3.8 

Largest patch index (%) 3.0 7.3 1.0 100.0 

Patch density 8.2 10.1 4.1 48.9 

Note: These percentages were calculated for land-cover types that fell within each 500 m 

pixel (not across the entire study area). 

 

 

Relationships between landscape indices and fire regime in the Landsat fire 

regime dataset (500 m resolution) were evaluated.  Pixels in the upper quartile range of a 

landscape index were compared to those in the lower quartile.  Range was determined by 

each index.  Burn date was classified as “early” (October to December) and “late” 

(January to May).  This burn date classification was used to stratify the landscape index 

quartiles for comparison purposes, and to illustrate patterns.  Note that Figures 9A, 10A, 

11A, and 12A are maps on which Figure 5 is depicted.  
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Areas with a high proportion of short grass savanna were characterized by fewer 

(patch density) large (largest patch index) non-square (shape index) patches, with fires 

occurring earlier in the season and more frequently (Figure 9). 

 

 
A.  Percentage cover 
        Lower Quartile              Upper Quartile 

 
Timing;    Jan 9 (21)       Dec 16* (16) 
Frequency: 157 (82)       234* (52) 
 
C. Largest patch index 

 
Timing:    Jan 9 (21)        Dec 16* (16) 
Frequency: 157 (81)        234* (53) 
 

B.  Shape index 
        Lower Quartile              Upper Quartile 

 
  Jan 8 (21)                     Dec 21* (17) 
  159 (81)                        223* (57) 
 
D.  Patch density 

 
  Dec 28 (21)                   Dec 31* (18) 
  204 (77)                        196* (66) 
 

          October – December                                                January - May                            

 

FIGURE 9.  Short grass savanna.  Lower and upper quartiles of (a) percentage cover, (b) 

shape index, (c) largest patch index, and (d) patch density.  Median (SD).  

Areas with more irregular, non-square-shaped short grass savanna patches (9b) had an 

18-day earlier average burned date (median of Dec. 21) than more square-shaped patches 

(median of Jan. 8).  Larger patches (9c) tended to burn 24 days earlier (Dec. 16) 

compared with smaller patches, which tended to burn later (Jan. 9).  Short grass savanna 

areas with smaller patch density (9d) burned 3 days earlier (Dec. 28), compared to areas 

with many patches (Dec. 31).  * represents a 5% level of significance. 
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Areas with a high proportion of agriculture/short fallow were likely to have many 

patches (patch density), with fires occurring earlier in the season, but less frequently than 

in areas with fewer patches (Figure 10).  

 

 
A.  Percentage cover 
        Lower Quartile              Upper Quartile 

 
Timing:    Dec 30 (19)     Dec 30 (22) 
Frequency:   224 (61)     147* (74) 
 
C.  Largest patch index 

 
Timing: Dec 30 (20)        Dec 30* (22) 
Frequency:   223 (62)     151* (74) 
  

B.  Shape index 
        Lower Quartile              Upper Quartile 

 
  Dec 30 (20)                  Dec 30 (22) 
  220 (64)                       152* (75) 
 
D.  Patch density 

 
  Jan 1 (20)                     Dec 26* (21) 
  199 (72)                       178* (77) 
 

          October – December                                               January - May                            

 

FIGURE 10.  Agriculture/short fallow.  Lower and upper quartiles of class level indices.  

Median (SD).  

Agriculture/short fallow areas with many patches (10d) burned 6 days earlier (median of 

Dec. 26), compared to areas with few patches (Jan. 1).  * indicates that average burned 

date and frequency of fires are different between the upper and lower quartile for the 

largest patch and patch density indices at a 5% level of significance based on the Mann-

Whitney test. 
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Areas with a high proportion of savanna/long fallow were likely to have fewer 

(smaller patch density), larger (patch index), non-square (shape index) patches, with fires 

occurring later in the season and more frequently (Figure 11). 

 

A.  Percentage cover 
        Lower Quartile              Upper Quartile 

 
Timing:    Dec 18 (21)       Jan 8* (17) 
Frequency:   164 (86)        218* (60)   
 
C.  Largest patch index 

 
Timing:    Dec 19 (21)     Jan 8* (17) 
Frequency:   165 (85)     218* (60)   

B.  Shape index 
        Lower Quartile              Upper Quartile 

 
  Dec 20 (21)                  Jan 4* (18) 
  172 (85)                        205* (64)   
 
D.  Patch density 

 
 Jan 4 (20)                      Dec 24* (21) 
 204 (71)                        187* (76) 
 

          October – December                                              January - May                            

 

FIGURE 11.  Savanna/long fallow.  Lower and upper quartiles of class level indices.  

Median (SD). 

Areas with more irregular, non-square shaped patches (11b) had a 15-day later average 

burned date (median of Jan. 4) than more regular-shaped patches (Dec. 21).  Larger 

patches (11c) tended to burn 20 days later (median of Jan. 8) than smaller patches, which 

tended to burn earlier (Dec. 19).  Savanna/long fallow areas with smaller patch density 

(11d) burned 15 days later (Jan. 4) than areas with many patches (median of Dec. 24).  * 

represents a 5% level of significance. 
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Areas with a high proportion of woodlands were likely to have many, larger, non-

square patches, with fires occurring later in the season and less frequently than in areas 

with a lower proportion of woodlands (Figure 12). 

 

A.  Percentage cover 
        Lower Quartile              Upper Quartile 

 
Timing:    Dec 28 (20)     Jan 9* (19) 
Frequency:   201 (74)     196* (68) 
 
C.  Largest patch index 

 
Timing:    Dec 29 (20)     Jan 9* (19) 
Frequency:   203 (73)     194* (69)   

B.  Shape index 
        Lower Quartile              Upper Quartile 

 
 Dec 29 (20)                    Jan 8* (19) 
 201 (73)                         194* (70)  
 
D.  Patch density 

 
  Dec 30 (21)                   Jan 6* (19) 
  198 (75)                         202* (67)  
 

          October – December                                                January - May                            

 

FIGURE 12.  Woodlands.  Lower and upper quartiles of class level indices.  Median 

(SD). 

Areas with a larger percentage cover of woodlands (12a) had a 12-day later average 

burned date (January 9) than areas with a lower proportion of woodlands (median of Dec. 

28).  Areas with more irregular, non-square-shaped woodlands patches (12b) had a 10-

day later average burned date (Jan. 8).  Larger patches (12c) tended to burn 11 days later 

(median of Jan. 9) than smaller woodlands patches (Dec. 29).  Woodlands areas with 

higher patch density (12d) burned 7 days later (Jan. 6), compared to areas with few 

patches (Dec. 30).  * represents a 5% level of significance. 
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Compared to the spatial patterns per vegetation type (CLIs) depicted in Figures 9 

through 12, the LLI (Figure 13) shows a more comprehensive and holistic view of the 

spatial pattern of vegetation types and temporal pattern of burn across the landscape.   

 

 
A.  Largest patch index 
        Lower Quartile              Upper Quartile 

 
Timing:    Dec 26 (21)     Jan 3* (21) 
Frequency:   141 (78)     228* (61)  
 
C.  Split index 

 
Timing:     Jan 3 (21)       Dec 26* (21) 
Frequency:  229 (61)       128* (76) 

B.  Patch richness 
        Lower Quartile              Upper Quartile 

 
 Dec 29 (21)                   Dec 31* (20) 
 198 (78)                        192* (71) 
 
D.  Patch density 

 
 Jan 2 (21)                       Dec 27* (20) 
 209 (80)                          178* (72) 
 

          October – December                                                  January - May                            

 

FIGURE 13.  Landscape.  Lower and upper quartiles of (a) largest patch index, (b) patch 

richness, (c) split index, and (d) patch density for landscape. Median (SD).   

Areas with smaller patches (13a) and more fragmentation (13c) had an 8-day earlier 

average burned date (median of Dec. 26).  Areas with fewer vegetation types (13b) had a 

2-day earlier average burned date (Dec. 29).  Areas with many patches (13d) had a 6-day 

earlier average burned date (Dec. 27).  * indicates that average burned dates and 

frequency of fires between the upper and lower quartile for each index are different at  a 

5% level of significance based on the Mann-Whitney test.  
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Early fires tended to be more fragmented and have smaller patches; thus, many 

small fires burned in areas with fewer vegetation types (three) than late fires.  Though 

specific vegetation types are not called out in the LLI analysis, it is likely from the CLI 

results that these vegetation types consisted of short grass savanna, agriculture/short 

fallow and savanna/long fallow.  Early fires in the LLI tended to burn less frequently 

(smaller frequency values).  In the CLI analysis, late large fires were associated with 

savanna/long fallow and woodlands.  Late fires in the LLI were associated with larger 

patches, and burned all four vegetation types (patch richness).  In the CLI analysis, late 

large fires were associated with savanna/long fallow and woodlands. 
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CHAPTER 4 

DISCUSSION 

The study is driven by four key research questions: (1) how does landscape 

pattern affect the fire regime in an African savanna?  (2)  do particular types of vegetation 

cover have unique effects on specific aspects of the fire regime?  (3) which common 

landscape ecological indices have the most potential for linking land cover and fire 

regime?  (4) what potential do landscape indices offer for resolving the issue of scale in 

use of coarse-resolution fire and land-cover data?  This study finds that landscape pattern 

affects the fire regime in the savanna of Mali.  Laris (2005) showed that mosaic fire 

regimes in Mali have a distinct temporal component: early fires tended to be smaller and 

more fragmented than later fires.  As confirmed here, early fires do tend to be fragmented 

and small, and more numerous than late fires in areas with fewer vegetation types. 

At the landscape level, findings show that early fires were associated with a 

decrease in the largest patch index (smaller patches) and the patch richness index (less 

diverse vegetation type), as well as an increase in the splitting index (smaller patches) 

and the patch density (many patches).  The data indicate that earlier fires were associated 

with landscape heterogeneity and fragmentation, but not necessarily a higher diversity of 

vegetation types.  In other words, a landscape composed of a few vegetation types 

(including short grass savanna), highly fragmented with small patches of vegetation, 

burned earliest.  Conversely, areas that have little fragmentation and large, homogenous 
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patches of vegetation burned later.  In western Burkina Faso, Caillault et al. (2014) 

reported that fires were clustered spatially, based on temporal proximity between fires, 

and that the fire regime showed a regular pattern in a fire season.   

Because these studies did not examine landscape pattern, this study shows how 

landscape pattern influences the fire regime.  This is thus a novel finding, confirming that 

pattern affects process: specifically, vegetation landscape patterns affect the fire regime. 

Fire timing and frequency varied by vegetation type.  The results indicate that 

fires occurred earliest in short grass savanna, followed by agriculture/short fallow, 

savanna/long fallow, and woodlands.  These findings are consistent with seasonal 

changes in fuel moisture levels in the vegetation and with human burning practices.  As 

Laris (2002, 2011) has argued, short, annual grasses have faster desiccation rates in 

southern Mali than other vegetation types.  For this reason, people set early fires in short 

grass areas with the goal of fragmenting the landscape to prevent large and damaging 

fires.  This preventive practice results in a burning regime that creates a more fragmented 

pattern.  Areas under long fallow cycles, characterized by more perennial grasses and 

denser woody vegetation, can hold moisture longer then areas of short fallow, composed 

primarily of annual grasses.  Long fallow savanna patches have non-square shapes and 

larger-sized patches.  Late fires in patches of savanna/long fallow area thus spread and 

burn in a larger, more contiguous pattern. 

Further, the results indicate that landscape heterogeneity by vegetation type plays 

a critical role in determining the timing and frequency of fire.  Few, large, and non-

square-shaped patches were associated with earlier burned dates in short grass savanna 

areas; in savanna/long fallow areas, these same patterns were associated with later burned 
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dates.  In woodlands, where there were many and smaller irregularly-shaped patches, 

fires occurred at later dates.  In agriculture/short fallow areas, many patches were 

associated with earlier burn dates.  Fires burned more frequently in savanna/long fallow 

or short grass savanna where there were larger and fewer patches with irregular shapes. 

Prior studies examining a relationship between landscape variables and fire 

regime have not fully accounted for the nature of burned-area data.  Burned-area sample 

units (a MODIS pixel for this study) below the level of a single fire are not spatially 

independent, owing to the contiguous spread of fires through the landscape (Moreno et al 

2011).  Further, fires are temporally and spatially correlated (Chou et al 1990).  

Consequently, the assumption of independence between two neighboring landscape 

sampling units is inappropriate (Dasgupta and Alldredge 2002).  To better capture 

relationships between landscape characteristics and fire regime dynamics, this study used 

landscape indices to consider elements within a 500 m block (a MODIS pixel) as related 

or spatially dependent. 

Research methods informed the four main questions about the effect of landscape 

pattern on fire regime. With Landsat resolution degraded to 500m, neighboring burned 

pixels (30m) within a 500m pixel were seen as spatially dependent and it was possible to 

analyze spatial patterns formed by the 30m pixels (i.e., size and shape of each patch 

formed by the burned pixels, distribution of patches, and number of patches in a 500 m 

pixel).  This detailed information about burn scar patterns was combined with temporal 

patterns  from three datasets with different resolutions to evaluate effects of vegetation 

landscape pattern on fire regime. 
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A few recent studies regarded landscape indices in studying fires patterns or 

regimes.  In Spain, Loepfe et al (2010) found homogeneity and land-cover type 

important.  They used landscape indices to analyze interactions between landscape 

patterns and wildfires, finding that fire spread is facilitated by high fuel load, use/cover 

types, and homogeneous terrains, and that fire promotes landscape homogeneity.  Lentile 

et al. (2005) used FRAGSTATS to estimate landscape indices in the Black Hills of South 

Dakota, examining spatial patterns of burn severity at the landscape level after the 2000 

Jasper fire.  They found that mixed-severity fire, in conjunction with frequent surface 

fire, played an important role in shaping the area’s forest structure, a spatially 

heterogeneous ponderosa pine forest. 

Compared to other studies on landscape pattern and fire, this Mali study is unique 

in that it examines the effect of landscape characteristics on fire timing, frequency, and 

variability.  Findings indicate that fragmentation and size and shape of patches (which 

differ in vegetation type), are important factors affecting the timing and frequency of 

fires.  The findings reaffirm the hypothesis put forth by Laris (2011): that vegetation 

cover in a savanna determines fire regime, not the converse as has long been argued in 

the literature (e.g., Aubreville 1949; Louppe et al 1995; Furley 2008).   

Coarse-resolution MODIS data had later burned date estimates than Landsat 

estimates.  Coarse-resolution data tended to overestimate large fires, which burned later, 

and to underestimate small fires that burned early in the season (Laris 2005; Eva and 

Lambin 1998).  Small fires were undetected by MODIS burned area because they did not 

cover enough of a 500 m pixel to reach the detection threshold.  In comparison, MODIS 

active fire could detect small fires by using the thermal band to detect heat emitted by 
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fires in a 1 km pixel.  Thus, burned date range from MODIS active fire is closer to 

Landsat burned dates than MODIS burned area range.  Although MODIS active fire data 

do show more information on pattern and timing of fires than MODIS burned area, they 

still tended to miss small, early fires that burned quickly and had short residence times. 

Results may be influenced also by inevitable modifiable aerial unit problem 

(MAUP) in processing of remotely sensed data (Dark and Bram 2007).  Because spatial 

and temporal constructs are defined by the data collectors (Landsat and MODIS), the 

spatial and temporal structures of the datasets  influence our perception of the landscape, 

and may also influence the associated aggregation, disaggregation and resampling 

methods used.  The nature and extent of this impact is unknowable.  

Additionally, the findings need to be interpreted within the context of a dynamic 

relationship between landscape structure, fire regimes, and people’s burning practices.  

For example, homogenous landscapes with high fuel loads and high connectivity are 

expected to favor high fire intensity and spread (Vega-García and Chuvieco 2006).  In 

turn, fire in many landscapes tends to change land-cover types (Lloret et al 2002; Viedma 

et al 2006).  In some cases, a fire may have reduced fuel load and connectivity, 

decreasing the probability of further fires and creating a negative feedback (Niklasson 

and Granström 2000; Stambaugh and Guyette 2008).  In other cases, positive feedbacks 

may have been created by the high flammability of fuels that developed shortly after a 

fire (Vilà et al 2001); enhanced connectivity between burned areas (Vázquez and Moreno 

2001; Viedma et al 2006); and reduction in landscape heterogeneity (Lloret et al 2002; 

Stambaugh and Guyette 2008; Viedma et al 2006).  Interactions between a fire and a 

landscape often depended upon vegetation type (i.e., savanna differs from forest which 
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differs from Mediterranean scrublands), as well as how humans interacted with the 

landscape.  Human activity becomes part of the dynamic of where fires occur and how 

they spread.  The footprints of these fires influence patterns of vegetation and its 

regeneration, which in turn influence human land-use (Millington 2005; Laris 2013), and 

the relationship is a cycle.  
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