CALIFORNIA STATE UNIVERSITY FULLERTON

COLLEGE OF HEALTH AND HUMAN DEVELOPMENT

Introduction

- Prader-Willi Syndrome (PWS) is a rare congenital disorder that results from the lack of paternally inherited genes or inactive maternal genes in the region of chromosome15. ^{1,2}
- PWS is the best characterized congenital cause for obesity and leads to increased body fat and reduced lean mass and growth hormone secretion.²
- $\circ~$ A hallmark of PWS is the hyperphagia that sets on during childhood.^2
- People with PWS often present with poor motor control function including decreased coordination, balance, and muscular power.^{3,4}
- The sit to stand (STS) task is used in daily life actions such as raising from a chair.⁵
- The key parameters that contribute to a successful performance in the STS task are lower limb muscle power and balance. ⁶
- Increased adiposity has a negative effect on muscle force production and balance.⁷
- Adults with PWS may exhibit a decreased
 performance in the STS task as they exhibit less
 muscular power and difficulties with balance.

Purposes

- To examine movement velocity differences during the STS in relation to PWS or excess adiposity.
- To determine if movement velocity is related to muscular strength.

This project was supported by the California State University Research and Scholarly Activity Incentive Grant Program 2017-2018 (Rubin DA, Pamukoff D). Ricabar M was supported by the LINK program (U.S. Department of Agriculture's National Institute of Food and Agriculture Award #2021-77040-34904.

Movement velocity in the sit-to-stand task in adults with Prader Willi syndrome

Martina Ricabar¹, Dr. Daniela Rubin¹, Dr. Derek Pamukoff² ¹Department of Kinesiology, California State University Fullerton, Fullerton CA ²Department of Kinesiology, Western Ontario University, London, CA

Methods

- Participants were 10 adults with PWS (in which 7 of them were on growth hormone replacement therapy), 10 adults with obesity (Body mass index (BMI)>kg/m²), and 10 adults with normal weight (NW) (BMI<25/ m²).
- The study was approved by the California State University Fullerton Institutional Review Board (HSR#-17-0202)
- Participants completed 3 sets of 5 repetitions of the STS task with 2 minutes of rest in between.
- Reflective markers were placed on the ankle, knee, hip, and trunk. Motion capture analysis system was used to capture movement velocity.
- Velocity of the pelvis segment center of mass was used to estimate overall movement velocity (m/s). Average and peak velocity were obtained from each repetition during the rising portion of STS task (determined as when the vertical velocity exceeded and fell below 0.2 m/s). Data were averaged across all sets and repetitions for analysis (i.e. (15 repetitions total (3 sets x 5 repetitions)).
- Quadricep muscular strength was measured using an isokinetic dynamometer in which participants completed 3 maximal knee extension contractions of the preferred dominant limb.
- The study had a cross sectional design. One-way variance of analysis determines group differences for the movement velocity of the STS task between 3 groups. Pearson product correlations examined the association between movement velocity and quadricep strength.

Acknowledgements

Results

Table 1. Participant descriptives for adults with PWS, NW, and obesity presented as mean \pm standard deviation (SD), (N=30)					
	Adults with PWS (n=10)	Adults with obesity (n=10)	Adults with NW (n=10)		
Sex	7M/3F	7M/3F	7M/3F		
Age (y)	22.70 ± 5.21	22.96 ± 2.39	22.85 ± 2.19		
Stature (m)	1.66 ± 0.15	1.74 ± 0.90	1.67 ± 0.67		
Body mass (kg)	79.09 ± 21.29*,**	105.45 ± 15.46	63.57 ± 5.03		
Loop mass (ltg)	44 72 ± 11 01**	$E0 60 \pm 12 10$	$A \in \mathbb{Z} A \pm \mathbb{Z} \supset \mathbb{Z}$		
Lean mass (kg)	44./3 ± 11.01	30.00 ± 12.18	40./4±/.31		
Body fat (%)	40.61 ± 7.78*	42.40 ± 5.62	23.42 ± 7.83		

*PWS significantly different from NW group (*p*<.05) **PWS significantly different from obesity group (*p*<.05)

Table 2. Movement velocities of the STS task and quadricep muscular strength presented as mean \pm standard deviation (SD), (N=30)

	Adults with PWS (n=10)	Adults with obesity (n=10)	Adults with NW (n=10)
STS average velocity (m/s)	0.61 ± 0.20*	0.71 ± 0.13	0.79 ± 0.08
STS peak velocity (m/s)	0.85 ± 0.26*	0.98 ± 0.22	1.09 ± 0.13
Quadriceps peak torque (N*m*kg ⁻¹)	172.59 ± 103.201	175.45 ± 60.98	218.89 ± 54.08

*PWS significantly different from NW group (p<.05)

**PWS significantly different from obesity group (p<.05)

1: Association between quadricep peak torque and movement velocity of the STS task

Conclusion

• The results suggest that excess adiposity is not a contributing factor in the movement velocity of the STS task.

 Potentially, lower movement velocity in PWS is related to decreased capacity to activate large motor units quickly.⁴ The found association between average movement velocity and muscular strength support this speculation.

In PWS, lower movement velocity maybe related to difficulties with maintain postural control⁷ which are needed for the stabilization phase of the STS task.
Further studies should evaluate whether balance is related to the velocity in the STS task to confirm this speculation.

peculation.
References
iscoll, D. J., Miller, J. L., & Cassidy, S. B. (1998). Prader-Willi Syndrome. In M. P. Adam (Eds.) et. al., GeneReviews®. University of Washington,
attle.Fermin Gutierrez, M. A., & Mendez, M. D. (2023). Prader-Willi Syndrome. In StatPearls. StatPearls Publishing.
rmin Gutierrez, M. A., & Mendez, M. D. (2023). Prader-Willi Syndrome. In StatPearls. StatPearls Publishing.
m, M. Y., Rubin, D. A., Duran, A. T., Chavoya, F. A., White, E., & Rose, D. J. (2016). A Characterization of Movement Skills in Obese Children With and
ithout Prader-Willi Syndrome. Research quarterly for exercise and sport, 87(3), 245–253. <u>https://doi.org/10.1080/02701367.2016.1182113</u>
mukoff, D. N., Holmes, S. C., Shumski, E. J., Garcia, S. A., & Rubin, D. A. (2020). Plantar Flexor Function in Adults with and without Prader-Willi
ndrome. Medicine and science in sports and exercise, 52(10), 2189–2197. <u>https://doi.org/10.1249/MSS.0000000000002361</u>
nssen, W. G., Bussmann, H. B., & Stam, H. J. (2002). Determinants of the sit-to-stand movement: a review. Physical therapy, 82(9), 866–879.
abin, D. A., Rose, D. J., Escano, D. L., Holmes, S. C., Garcia, S. A., & Pamukoff, D. N. (2023). Contributing factors to postural stability in Prader-Willi
ndrome. <i>Human movement science</i> , 91, 103125. <u>https://doi.org/10.1016/j.humov.2023.103125</u>
m S. M. (2016). Influence of Obesity on Postural Stability in Young Adults. Osong public health and research perspectives, 7(6), 378–381.
tps://doi.org/10.1016/j.phrp.2016.10.001
shioka, S., Nagano, A., Himeno, R., & Fukashiro, S. (2007). Computation of the kinematics and the minimum peak joint moments of sit-to-stand
ovements. Biomedical engineering online, 6, 26. https://doi.org/10.1186/1475-925X-6-26
yartai, M. E., Luomajoki, H., Tringali, G., De Micheli, R., Grugni, G., & Sartorio, A. (2023). Differences in spinal postures and mobility among adults with
ader-Willi syndrome, essential obesity, and normal-weight individuals. Frontiers in endocrinology, 14, 1235030.
tps://doi.org/10.3389/fendo.2023.1235030