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ABSTRACT 

DETERMINANTS OF FIRE INTENSITY IN A MESIC WEST AFRICA SAVANNA:  

A STATISTICAL ANALYSIS OF FIRE CHARACTERISTICS 

By 

Rebecca L. Jacobs 

January 2018 

A fundamental premise of savanna fire ecology is that late dry season fires burn more 

intensely than early dry season fires. Late dry season fires are considered a major determinant of 

savanna woody vegetation as they are thought to be more damaging to trees, thus shaping the 

grass/tree dynamic of savannas. Most savanna fire experiments have adopted the early/late fire 

convention in their experimental design, based on the pioneering work of Aubréville. Recent 

research suggests that numerous factors determine fire intensity, and that the widely accepted 

dichotomous view of fire intensity as driven by early/late seasonal timing greatly oversimplifies 

a complex phenomenon. In particular, wind direction may be a significant factor in determining 

fire intensity. 

To determine the factors that influence fire intensity, experimental fires were conducted 

in the mesic savanna of Mali. Data were collected for fire season, biomass consumed, grass type, 

scorch height, speed of fire front, fire type, and ambient air conditions for each burn. Multiple 

regression analyses were used to determine the key factors affecting the fire intensity and 

severity. Results suggest there are fundamental differences in fire behavior and intensity 

depending on wind direction relative to the fire. Intensity is not explained by any tested variables 

in head fires. Intensity of back fires is determined primarily by seasonal timing and, to a lesser 

extent, grass characteristics.  
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CHAPTER 1 

INTRODUCTION 

Savannas 

Savannas, defined as ecosystems with a continuous layer of grasses and a discontinuous 

layer of trees and/or shrubs, are a unique and important biome (Solbrig 1996). The savanna 

vegetation type exists as a continuum of varying amounts of grasses and trees bracketed on one 

side by dense tree canopies that exclude grasses and on the other by open grasslands lacking any 

trees (Hill, Roman, and Schaaf 2011). However, this simplistic description belies the complexity 

and “diversity in both biotic and abiotic characteristics, in floristic composition and in vegetation 

history” of savanna landscapes (Solbrig 1996, 1). In addition, the coexistence/codominance of 

grasses and trees has long puzzled biologists, earning the title "the savanna conundrum" (House 

et al. 2003, 1763). Confounding matters more is that savanna ecosystems can support a greater or 

lesser amount of tree cover depending on a variety of human and natural factors with critical 

consequences for carbon storage and ecosystem services.  

Globally, savanna ecosystems cover over 20 percent of the world's land area, contain 

much of its rangelands, generate approximately 30 percent of global net primary productivity, 

and provide directly or indirectly for millions of people (Scholes and Archer 1997; Lehmann et 

al. 2008; Smit et al. 2016). Given their significance, it is crucial to understand savanna systems 

and their drivers. Savanna ecosystems face a number of threats, including woody encroachment, 

landscape degradation, drought, and land use changes (Campbell 2013; Smit et al. 2016). Fire is 

one of the most important drivers of savanna given that the “association between fire and 

savannas is as old as savannas themselves, since it follows inevitably from their climate and fuel 

characteristics" (Scholes and Walker 1993, 10). In environments capable of supporting one of 
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several life forms, such as savannas, fire can be a selective process driving the survival of one 

species over another, restructuring the habitat, or directing the energy flows of an ecosystem 

(Pyne 1991).  

Intensity is thought to determine tree survival and growth rates in savannas because of its 

importance to the tree/grass dynamic, and significant research has focused on identifying the 

drivers of fire intensity. Fire timing, i.e., early, middle, or late dry season, appears to be a critical 

factor determining fire intensity (Williams, Gill, and Moore 1998; Higgins, Bond, and Trollope 

2000; Govender, Trollope, and Van Wilgen 2006; Laris et al. 2016). Seasonal timing is 

associated with dryness of fuels as well as fire-facilitating weather conditions. Determination of 

the fire seasonality at regional and global scales is important for characterizing fire regimes, 

variation in biomass burning emissions, and fire climate impacts (Le Page et al. 2010; Zhang, 

Kondragunta, and Roy  2014). 

Found in both temperate and tropical regions, one climatic constant of savanna areas is 

rainfall seasonality (Solbrig, Medina, and Silva 1996). This seasonality of precipitation produces 

a wet growing period followed by a period of progressive drying until the next growing season's 

rains arrive. These conditions broadly frame the general requirements necessary for savanna 

landscapes to form, however they do not reveal the causative factors behind the "savanna 

conundrum." Several ecological theories have been suggested to explain the coexistence of trees 

and grasses in savanna landscapes (Laris 2008). Early models were based on resource 

partitioning theories where trees and grasses utilized distinct subsurface levels, allowing them to 

grow together without competition, and the savanna landscape was seen as existing in a stable, 

equilibrium state (Walter 1971). Later models recognized the inherent instability of savanna 

systems. These disequilibrium models are based on disturbance regimes where some disrupting 
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force favors either grasses or trees and prevents one from excluding the other (Scholes and 

Archer 1997; Laris 2008).  

However, even these disequilibrium models fall short of creating a general theory to 

explain grass-tree regulation in all savannas. As in most cases, the reality of what maintains 

savannas's grass/tree codominance becomes more nuanced as one looks more closely at it. The 

best way to understand savanna dynamics may be a geographic perspective, one which 

recognizes that different determining forces may create and maintain savanna landscapes in 

different places. As Sankaran, Ratnam, and Hanan (2008) found, a number of different woody 

cover drivers interact with varying levels of importance to shape the savanna landscape. In 

addition, results by Vaughn et al. (2015) suggest that large-scale environmental factors may be 

less important than commonly assumed in understanding vegetation structure in southern African 

savanna systems. 

 Savannas are considered climate determined in areas below 750 mm of precipitation per 

year as too little rain falls to form a closed canopy forest (Furley 2010). Above 750 mm of 

annual precipitation, savannas are termed mesic and are considered disturbance driven. The 

disturbance driving savanna dynamics may be biotic or abiotic. In southern and eastern Africa, 

herbivory by grazers and browsers appears to be a primary determinant (Sankaran, Ratnam, and 

Hanan 2008; Holdo, Holt, and Fryxell 2009) while in Australia and sub-Sahalian western Africa, 

fire is believed to be the primary driver (Lehmann et al. 2008; Laris et al. 2016). Thus, outside of 

climatic restraints, savanna landscapes can be created by different forces in different locations. 

 In addition to being shaped by different drivers in different places, savanna ecosystems 

exhibit noteworthy botanical and floristic differences. For example, in the Brazilian savannas, 

the cerrados, the phylogenetic affinities of the flora are with the nearby Amazonian flora; 
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however, the cerrado savanna vegetation physiognomically resembles that of the savannas of 

West Africa more than it does the Amazonian forest (Solbrig, Medina, and Silva 1996). 

Similarly, the plants in African savannas are more floristically related among themselves than to 

savanna vegetation on other continents. In other words, vegetation in the major savanna regions 

evolved separately while resulting in similar structural features. This can make it more difficult 

to understand one savanna based on research from other, geographically separated savannas 

(Solbrig, Medina, and Silva 1996). 

Fire in Savannas 

Savanna landscapes have been the focus of scientific inquiry for over 100 years, and the 

motivation behind that research has varied widely, often reflecting contemporary priorities and 

biases as well as a geographic predilection (House et al. 2003; Laris et al. 2017). In Africa, 

historical savanna research has frequently been driven by anti-fire policy goals underlain by the 

belief that local peoples were degrading the land, turning forests into less desirable savannas 

(Aubréville 1953; Laris and Wardell 2006). "While it is true that scientific writers have 

endeavoured to inform the public of the manifold evils following the wake of fire, it is equally 

true that but little scientific experimentation has been brought to bear upon the problems 

connected with the periodic fires that sweep through vast areas of Africa” (Phillips, cited in Scott 

1984, 54). This quote by Phillips from the early twentieth century illustrates the colonial mindset 

regarding fire in Africa. On the other hand, historic Australian fire research focused more on 

avoiding dangerous and uncontrollable wildfires, usually by prescribing "controlled" burning to 

reduce fuel loads (Pyne 1991). Despite differences in their stated goals, researchers in both 

Africa and Australia saw fire on the landscape as something to ideally be prevented or at worst 

managed to reduce the damage it could cause (Laris and Wardell 2006; Furley et al. 2008).  
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More recent scholarly work has begun to question these scientific legacies, acknowledging 

the importance and even necessity of fire in savanna systems (Fairhead and Leach 1998; Laris et 

al. 2017). Anthropogenic fire originated in Africa and has existed there longer than anywhere 

else in the world (Pyne et al. 2004). The African savannas are the Earth’s most extensively and 

frequently burned regions, accounting for approximately 64 percent of the global burned area 

annually (Giglio et al. 2010). This hotspot of savanna systems and fire has sparked a wealth of 

research on the drivers of changes in woody cover.  

In the 1930s, Andre Aubréville started what became the longest running burning 

experiment in West Africa (Furley et al. 2008). His study in the Ivory Coast was intentionally 

designed to show dramatic differences between early and late dry season fire treatments in order 

to garner support for his anti-fire forestry policies (Laris et al. 2017). The results of his 

experiments demonstrated that late dry season fires were much more damaging to trees than fires 

set earlier in the dry season. Aubréville's research was highly influential and many later studies 

continued to use his early/late dry season dichotomy (Laris and Wardell 2006). However, 

Aubréville's experimental setup does not reflect the actual burning practices of people in that 

area since most fires occur during the middle of the dry season (Laris et al. 2017). As Furley et 

al. (2008) note, burning experiments have been plagued by concerns with artificiality, as 

illustrated above, and scale, as described below. 

Most of the burning experiments conducted in southern Africa have been large-scale, 

hundreds of times larger than fires typical of other areas, and often at the same geographic 

location (Govender, Trollope, and Van Wilgen 2006; Higgins et al. 2007; Higgins et al. 2012). 

While this may be highly beneficial from a logistics perspective, it could also skew the scientific 

discussion, biasing it towards large fires in this specific area. Many of the Australian fire studies 
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have also been large-scale (Williams, Woinarski, and Anderson 2003). In addition, the majority 

of modern savanna fire research has been conducted in South African and Australian savannas, 

often in areas where indigenous and local populations have been removed and excluded from the 

landscape or remain in limited numbers (see Higgins et al. 2007 in Kruger National Park, South 

Africa; Williams, Gill, and Moore 1998 in Kakadu National Park, Australia for examples). 

 In contrast, the mesic savannas of West Africa, of which 25 to 80 percent burns annually, 

are well populated by the very people who are setting nearly all of these fires (Laris 2011). This 

is a highly humanized system where climate, culture, and environment have interacted for 

millennia (Duvall 2011). A humanized fire regime is one where human practices are the 

primarily determining factor rather than the climate or ecological factors that tend to dictate most 

fire regimes globally (Krawchuk et al. 2009). The regularity of the fire regime in the West 

African savanna suggests that humans play a strong role in governing the regime of burning 

(Archibald, Staver, and Levin 2012). Further, research suggests that it is often the number of 

fires, rather than the size of individual large fires, that affects how much of the landscape burns 

and when (Archibald et al. 2010) The fire regime of the mesic West African savanna is 

dominated by numerous small fires (Laris 2005). 

Fire Research  

 Understanding the characteristics of fires is important to understanding their landscape 

effects. The frequency, seasonality, intensity, severity, type, and spread patterns of fires that 

prevail in a particular location are known as its regime (Bond and Keeley 2005). Terminology 

used here follows Keeley's (2009) definitions of fire intensity as the physical process of energy 

released by combustion and of fire severity as the loss of organic matter resulting from the fire. 

Fire severity describes how fire intensity affects ecosystems and had been used following 
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wildfires where direct information on fire intensity was absent (Keeley 2009). Measures of fire 

intensity and severity have been linked to a number of landscape and ecosystem variables, and 

studies show fire intensity may have a more profound impact than fire frequency on tree survival 

in some savanna types (Higgins et al. 2007; Laris et al. 2016). Thus, assessing fire intensity 

allows for the quantification of a fire's landscape disturbance and the prediction of subsequent 

ecological responses.  

Byram (1959) defined fireline intensity as the rate of energy or heat release per unit time 

per unit length of fire front, regardless of its depth. Fireline intensity uses kilowatts per meter 

(kWm
-1

) as the unit of measure and can be mathematically derived from commonly collected fire 

data. Intensity values factor in the heat of combustion of the fuel, the amount of biomass 

consumed, and how quickly the fire travelled. As Van Wagner (1977) notes ". . . fire intensity 

thus conceived contains about as much information about a fire's behavior as can be crammed 

into one number" (24). Weather conditions, fuel load, and fuel moisture are the principle 

determinants of fire intensity (Cheney, Gould, and Catchpole 1998). 

 Fire intensity is strongly related to wind direction. Of the studies that compare fires in 

similar fuels under similar conditions, head fires on average have higher intensity values than 

back fires (Trollope et al. 1996). Head fires are believed to have a greater effect on trees than on 

grasses while back fires have the potential to have a greater effect on grasses than on trees 

(Trollope, Trollope, and Hartnett 2002). However, many studies on fire intensity and ecological 

response fail to note the wind direction relative to the fire direction (Brookman-Amissah et al. 

1980; Higgins et al. 2007; Levick et al. 2009; Smit et al. 2010; Werner and Prior 2013; Smit et 

al. 2016). Other studies were conducted only as head fires, which may be a more efficient 
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method but may also have unintended and/or unidentified effects on their results (Govender et al. 

2006; Rissi et al. 2017). 

 Significant modern research has focused on combating woody encroachment, a 

progressively more frequent phenomenon in dry lands globally (Smit et al. 2016). Woody 

encroachment is decreasing grass cover and increasing woody cover, which reduces the 

usefulness of rangelands and diminishes biodiversity. Research in southern and eastern Africa 

shows that Byram’s fireline intensity is significantly correlated to post-fire vegetation response 

(Trollope, de Ronde, and Geldenhuys 2004). Higher intensity fires rather than more frequent 

fires may be the most effective tool for combating woody encroachment (Smit et al. 2016).  In 

other areas, parts of Australia and western Africa for instance, tree loss is a greater concern than 

woody encroachment, and a number of studies have attempted to quantify the relationship 

between fire intensity and tree survival (Prior, Williams, and Bowman 2010; Werner and Prior 

2013)  Fire intensity does have some important limitations, particularly in how it is measured and 

the ability to make cross-ecosystem comparisons (Keeley 2009). In addition, post-fire effects 

such as tree mortality may be a function of residence time or seasonal timing rather than fire 

intensity. 

The Chandler Burning Index (CBI) is a fire risk index based on temperature and relative 

humidity, originally designed for application at a monthly time-scale (Chandler et al. 1983). 

Primarily climatic, the CBI integrates the role of vegetation moisture in this fire risk index 

through the incorporation of relative humidity (Le Page et al. 2010). The CBI has been used to 

illustrate eco-climatic fire seasonality both at the regional and global levels (Le Page et al. 2010; 

Zhang, Kondragunta, and Roy 2014). Chandler et al. (1983) define fire risk as the result of 

constant and variable factors that affect the inception, spread, difficulty of control, and the 
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damage fires may cause. In savannas, areas with high seasonal climatic variability, the CBI is 

closely aligned with the dry season as it reflects the conditions under which fire is likely to occur 

(Le Page et al. 2010). 

Study Questions 

The relationship between seasonal timing and fire intensity has been demonstrated by 

large-scale burning experiments in two of the most studied savanna landscapes, the southern 

African and the northern Australian. However, data are lacking for smaller fires and for more 

humanized savanna systems. Using measurements from burning experiments in southwestern 

Mali in West Africa, this statistical analysis will evaluate if seasonal timing controls the intensity 

and severity of fires.  

The primary goals of this study are to determine the driver(s) of fire intensity and severity 

for burning experiments in an area of mesic Sudanian savanna in Mali, West Africa. 

There are three specific objectives:  

1.  To investigate seasonal variation in fire behavior  

2.  To explore the effect of wind direction on fire behavior 

3.  To use multiple regression analysis to determine the key factors effecting the fire intensity  

 



10 

CHAPTER 2 

METHODS  

Study Area 

  The study area is located in the southwestern region of Mali within the southern Sudanian 

savanna belt (White 1983). In general, the climate of this area can be divided into three seasons: 

a relatively cooler dry phase from October to February, a hot and dry season from February to 

June, and a warm and rainy period from June to October (Laris et al. 2016). With average annual 

precipitation of approximately 900 to 1200 mm, this region is categorized as a mesic savanna. 

The rainy season extends over a five month period; however, precipitation is sporadic and 

typically concentrated over seventy to eighty days during that season (Laris 2013). As sufficient 

rain falls to support a closed forest canopy (Staver, Archibald, and Levin 2011), disturbances 

such as grazing, browsing, rotational agriculture, or fire maintain this landscape as a savanna 

(Laris et al. 2017). 

The two study sites for this research, Tabou and Faradiele, both exist within the 

humanized southern Sudanian savanna. The Tabou area is slightly more populous than Faradiele, 

but in both areas the population is mostly smallholder farmers of the Bambara and Malinke 

ethnic groups (Laris, Foltz, and Voorhees 2015). Faradiele receives more precipitation than 

Tabou, 1200 mm and 1000 mm per year respectively (Henry 2011). In Tabou, about 43 percent 

of the land is under annual cropping while in Faradiele about 33 percent is cropped annually 

(Laris, Foltz, and Voorhees 2015). Significant amounts of land remain fallow annually due to the 

shifting agricultural patterns. 
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FIGURE 1. Locations of experimental burning sites. Country of Mali is in red on the left 

and the study sites, Tabou and Faradiele, are marked as red circles on the right. 

 

The southern Sudanian savanna landscape exhibits high heterogeneity due to soil, 

hydrology, and anthropogenic land uses (Duvall 2011). Spatially, this creates a mosaic pattern of 

annual-dominated short grass savannas in areas of hard pan or poor, gravelly soils while more 

fertile soils are covered in a near-continuous layer of tall perennial grasses with a widely varying 

mixture of trees and shrubs (Laris, Foltz, and Voorhees 2015). In very moist areas, thickly 

forested savanna woodlands can form as well as closed canopy gallery forests along stream 

channels (Laris et al. 2017). In addition, traditional land rotation patterns result in a patchwork of 

actively farmed plots and fallow fields of various ages (Duvall 2011).  

 The annual fire season begins shortly after the rains end and typically runs from 

November through March with the majority of fires occurring in late December and early 

January (Laris et al. 2017). The fire regime is bounded by climatic limitation, but the timing of 
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burning is significantly influenced by people within that period (Laris 2002). Most fires in this 

region are set intentionally by farmers, herders, and other resource user groups for a variety of 

user-specific reasons, such as preparing fields for agriculture, improving pasture and hunting 

grounds, and preventing destructive fires (Laris and Wardell 2006). 

Field Collection 

 The fire experiment data were collected as part of the field campaign of Dr. Paul Laris 

and Dr. Moussa Koné for their ongoing research on savanna fire emissions and ecological 

impacts in West Africa. Experimental burns during three different fire seasons, early dry season 

(November and December), middle dry season (January) and late dry season (February and 

March), were set on 10 m x 10 m plots at several locations in the Tabou and Faradiele areas of 

southern Mali. The designation of early, middle, and late fire timing was selected for two 

reasons. First, the selection of early (November and December) and late (February and March) 

allow for comparison with numerous historical and modern savanna fire experiments that used 

only early and late dry season dates for their fires (e.g., Aubréville 1953; Swaine 1992; 

Govender, Trollope, and Van Wilgen 2006; Russell-Smith and Edwards 2006;  Prior, Bowman, 

and Williams 2010; Werner and Prior 2013). Second, the middle fire season of January reflects 

the actual fire practices of this region; most burning occurs during the middle of the dry season 

(Laris 2011; Laris et al. 2016). Studies that mention a middle season often state that middle dry 

season fires are uncommon, with more fires occurring in the early dry season and more extensive 

fires occurring in the late dry season (Werner and Prior 2013). While that may be true  in other 

locations, fire frequency peaks in the middle of the dry season in the study area. The decision to 

divide the dry season into three distinct periods also reflects recent studies that separate the fire 

season into early, middle, and late (see Rissi et al. 2017 for an example). 
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  For the 2014 - 2015 fire season, twenty-two middle dry season plots were burned in 

January and twenty-eight late dry season plots were burned in February. No plots were burned 

during the 2014 - 2015 early dry season due to logistical constraints. During the 2015 - 2016 fire 

season, thirty-five early dry season plots were burned in November and December, twenty-seven 

middle dry season plots were burned in January, and twenty-five late dry season plots were 

burned in March. 

 

TABLE 1. Experimental Fires by Location, Year, and Timing Within the Dry Season 

Location 

Fire season 

Number of fires 

Early 

 

Middle 

 

Late 

Tabou 

2014 - 2015 

 

  0 

 

13 

 

15 

2015 - 2016 15 12 13 

Faradiele    

2014 - 2015 

2015 - 2016  

  0 

20 

  9 

15 

13 

12 

 

 Fuel load (plot biomass) was measured in each of the experimental plots by delineating 

three pre-fire quadrats of 1 x 1 m. Quadrat 1 was located in the area determined qualitatively to 

have the highest grass biomass, Quadrat 2 the average grass biomass, and Quadrat 3 the lowest 

grass biomass. Quadrat boundaries were marked with fire-proof material, grasses were cut at the 

base, and an electronic balance was used to weigh the biomass. The average biomass of the three 

quadrats was recorded as the plot biomass. When present, leaf litter was weighed separately from 

grass biomass. For fires conducted in the early and middle dry seasons when grasses were not 

fully cured, the grasses from one of the 1 m quadrats were weighed wet and left to dry in a 

protected area for one week, after which they were weighed again and the percent moisture 
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content taken as the average for the plot. Small uncertainties and inaccuracies may affect these 

measurements due to field conditions including changing relative humidities over the course of 

the sample drying period, but they are not expected to affect outcomes significantly. 

 Vegetation characteristics including grass type (annual or perennial), grass species, and 

their height classification were recorded for each site. A Kestrel 5500 Weather Meter portable 

weather station was used to collect wind speed, ambient humidity, and temperature during the 

burning of each plot, and values were averaged for each burn. The weather station was placed 

near each experimental plot approximately 2 m off the ground in an open area. Wind direction 

relative to the direction of each fire was recorded as head, where the fire and the wind are 

traveling in the same direction; back, where the fire and the wind are traveling in opposing 

directions; and mixed, where the wind switches between head and back during the course of the 

fire. Whenever possible, pairs of head and back fires were conducted on adjacent plots. 

 

FIGURE 2. Diagram of typical experimental burn plots. Back fires are conducted first to 

reduce risk posed by head fires. 
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 Ignition time was noted and each fire was timed from start to when the flaming front 

reached the end of the 10 meter plot. Flame height and fire behavior were observed during the 

fire. Post-fire, ash and any unburned material were weighed for three 1 m x 1 m quadrats 

adjacent to and of similar composition to the three 1 m x 1 m pre-fire quadrats to determine the 

amount of biomass consumed. Scorch height was averaged for each plot by measuring the height 

of scorch marks on several shrubs and small trees with a tape measure. Visual efficiency, the 

completeness or patchiness of each burn, was estimated by two observers. 

In summary, data on the following variables were collected in the field: timing/season 

(early, middle or late), average plot biomass, grass percentage of biomass, biomass consumed 

(fire severity), grass type (annual or perennial), grass species and their height classification, wind 

speed, ambient humidity, temperature, fire direction (head or back), time of day, fire duration, 

scorch height, and visual efficiency (patchiness). Field observations were entered into 

spreadsheets and any discrepancies between values collected by different researchers were 

addressed and resolved.  

Statistical Analysis 

 To quantify fire intensity, Byram's Fireline Intensity, which combines the heat of 

combustion, the amount of fuel consumed, and the rate of spread, is commonly used (Bryam 

1959). The formula to compute Byram's fireline intensity is:  

I = Hwr 

where I is Byram’s fireline intensity (kWm
-1

), H is the net low heat of combustion (kJ kg
-1

), w is 

the fuel consumed in the active flaming front (kg m
-2

), and r is the linear rate of fire spread (m 

sec
-1

). The net low heat of combustion (H) was selected following Williams, Gill, and Moore 

(1998) with 20,000 kJ kg
-1

 as an appropriate value for savanna fires. The amount of fuel 
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consumed in the flaming front was calculated by subtracting the average ash remaining post-fire 

in three quadrats per plot from the pre-fire dry biomass. Variable r was derived from the plot 

dimensions (10 m x 10 m) and the time it took for the first flaming front to reach the end of the 

plot. Byram’s I, calculated for each of the experimental fires, is the dependent variable for all 

analyses. 

 Additional variables also were calculated for the analysis. Time of day of the fires, called 

“day timing,” was determined by dividing the range of fire start times into four groups: 10:00 

a.m. to 12:00 p.m., 12:00 p.m. to 2:00 p.m., 2:00 p.m. to 4:00 p.m., and 4:00 p.m. to 6:00 p.m. 

All experimental fires were within this time range and any fires spanning more than one group 

were assigned the group with the majority of the duration of the fire. While this is an ordinal 

variable, older studies have used that type of variable in multiple regression (Winship and Mare 

1984), and it is discussed further at the end of this chapter. Fire severity was calculated by 

dividing the biomass consumed, determined by post-fire weighing of ash, by the pre-fire 

biomass.  

 The Chandler Burning Index (CBI) is a fire risk index and was selected for use in this 

analysis as a proxy for seasonality as it is most suitable for monthly time scales (Carlson and 

Burgan 2003), and it has been used to illustrate eco-climatic fire seasonality both at the regional 

and global levels (Roads et al. 2008; Le Page et al. 2010; Zhang, Kondragunta, and Roy 2014). 

The formula, modified following Le Page et al. (2010), uses monthly mean high temperatures 

and relative humidity from early (November and December), middle (January), and late 

(February and  March) periods over the 2005 - 2015 time period. Weather data from Bamako, 

Mali (approximately 70 km from the Tabou study site) were accessed online from 

CustomWeather with permission.  
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 The modified Chandler Burning Index is: 

CBI =  
                                                             

  
 

where RH is the relative humidity and T is the temperature in Celsius.  

 Values for the CBI index range from zero, no fire danger, to over 100, extreme fire 

danger and can be interpreted in terms of the fire's likely behavior or of the danger posed by a 

fire staring during those conditions. Tables 2 and 3 below define the CBI value range and 

illustrate the meanings of the values as they relate to fire behavior and to fire risk. 

TABLE 2. Interpretation of Chandler Burning Index Values as Fire Behavior from 

Chandler et al. (1983) 

 

Calculated Values Fire Behavior 

0 - 19 Creeping fire only 

20 - 39 Surface fire only 

40 - 59 Running fire, occasional torching of tree crowns 

60 - 79 Hot running fire, spot fires, and torching common 

80 + Crown fire likely 

 

 While Chandler's original value classification system refers to the behavior of forest fires, 

it retains its usefulness in this application to savanna fires. High intensity savanna fires may 

behave more like traditional forest fires given the right conditions of strong winds, low humidity, 

and high temperatures with similarly severe impacts to tree cover. In addition, the interpretation 

of the CBI as fire danger levels aligns with this study's investigation of the role of season as a 

driver of fire intensity. 



TABLE 3. Interpretation of Chandler Burning Index Values as Fire Danger Levels from 
the National Wildland Fire Coordinating Group (Schlobohm and Brain 2002) 

 

Calculated Values Fire Danger Level Description 
 

0 - 50 Low Fuels do not readily ignite from small 
  firebrands. Wood fires spread slowly by 
  creeping or smoldering and fires in open 
  cured grasslands may burn easily. Little 
  danger of spotting and control generally 
  easy. 

50 - 75 Moderate Fires may start from most accidental 
 causes but the number of starts is low. In 
 open cured grasslands, fires burn briskly 
 and spread rapidly. Timber fires spread 
 slowly to moderately fast and short- 
 distance spotting may occur. Fires of 
 moderate intensity and unlikely to become 
 serious. Control is relatively easy. 

75 - 90 High Fine, dead fuels ignite readily and fires 
 start easily from most causes. Fires spread 
 rapidly and short-distance spotting is 
 common. High intensity burning may 
 develop in areas of concentrated fine fuels 
 and on slopes. Fires may become serious 
 and difficult to control as they grow. 

90 - 97.5 Very High Fires will start easily, spread rapidly, and 
 quickly increase in intensity. Long- 
 distance spotting and fire whirls possible. 
 Can be difficult to control and often 
 become much larger and longer-lasting 
 fires. 

97.5 + Extreme All fires potentially serious and will start 
 quickly, spread vigorously, and burn 
 intensely. Small fires increase in size much 
 faster than at lower danger levels and long- 
 distance spotting likely. Fires may be 
 unmanageable and control action 
 impossible until danger level declines. 
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Intensity was calculated for 137 fires, and of those, eighty-three plots possessed all of the 

necessary variables after being cleaned and prepared in Microsoft Excel. The dataset was saved 

as an .xls file and opened in IBM Statistical Package for Social Science Statistics 24 software. A 

correlation matrix was created and relationships between variables were identified.  Using 

information from the correlation matrix, the most relevant independent variables were chosen for 

the multiple regression analysis. Given the known Y variable, the fairly normal distribution of X 

variables, and the records:variables ratio, a multiple regression analysis is appropriate. With the 

goal of determining which factor(s) best explain intensity, the multiple regression analysis sorts 

through the possible explanatory variables to find the most economical X variable(s) in light of 

their interactions with one another. Since this is the first analysis of the drivers of fire intensity in 

West Africa, a high level of significance is called for and a rigorous alpha of  p = 0.05 shall be 

set.  

Enter, Forward, and Backward multiple regression models were run on the entire dataset. 

Byram’s fireline intensity was the dependent variable for all models. Independent variables were 

CBI of the season, time of day, wind speed, ambient humidity, temperature, grass type (annual or 

perennial), grass species (classified by height), and grass percentage of biomass.  

Field observations of the fire team identified wind direction as the most meaningful 

bifurcation of the dataset. Data were separated into head (fire and wind traveling the same 

direction) and back (fire and wind traveling in opposing directions) fires and analyzed as distinct 

datasets. Separate correlation matrices were created for head and back fires. Three types of 

multiple regression models, Enter, Forward, and Backward, were run on both datasets. The Y 

variable for all regressions was Byram’s fireline intensity. The independent variables for the 

head and back regressions were the same as for the complete dataset: CBI of the season, time of 
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day, wind speed, ambient humidity, temperature, grass type (annual or perennial), grass species 

(classified by height), and grass percentage of biomass.  

 Removal of plots with missing values reduced the number of records to eighty-three, and 

separating the data into head (forty) and back (forty-three) decreased it further. The records: 

variables ratio of this dataset is at the cusp of what is recommended for multiple regression 

models, 5:1. This could limit the robustness the analysis. Another possible issue with this 

analysis is the inclusion of an ordinal independent variable, day timing. Most current statistical 

theory does not endorse using ordinal variables as predictors in multiple regressions. However, 

older studies in psychology and sociology have done so (see Winship and Mare 1984). As this 

analysis is an exploratory study, the variable will be used and any possible complications 

resulting from this decision will be addressed in the discussion. A final potential limitation of 

these data is the possibility for imprecision in the measurements. Chaotic fire behavior may 

make precise observations challenging. However, standardization among observers should work 

to limit any potential variation. 
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CHAPTER 3 

RESULTS  

Fire Characteristics  

 Intensity was able to be calculated for 137 fires over the 2014-2015 and 2015-2016 fire 

seasons, and of those, eighty-three plots possessed all of the necessary variables for multiple 

regression analysis. Dividing the plot data into early, middle, and late shows general trends over 

the dry season. Average temperature increases while average humidity decreases as the dry 

season progresses and wind speed peaks mid-season. The percent grass of the total plot biomass 

is greatest in the early season, reflecting an increase in the amount of leaf litter in the middle and 

late dry seasons due to drought senescence.  

TABLE 4. Mean Plot Characteristics by Season 

Mean plot characteristics Early Middle Late 

Dry biomass (tons/hectare) 3.90 4.48 4.53 

Grass biomass (percent)    90    71    77 

Temperature (Celsius) 32.5 31.8 37.0 

Relative humidity (percent) 29.6 21.2 19.4 

Wind speed (meters/second) 01.1   1.4 0.85 

 

 The characteristics of the experimental fires also vary by season. The average visual 

efficiency (i.e., the completeness of a burn) and the average severity (i.e., the percent biomass 

consumed) both increase as the dry season progresses from early through middle to late. Scorch 

height and burn time show a slightly different pattern where the middle season has the lowest 
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average values followed by early and late, respectively. Both visual efficiency and severity are 

positively correlated to CBI, with severity having a higher and more significant correlation. 

TABLE 5. Mean Fire Characteristics by Season 

Mean fire characteristics Early Middle Late 

Burn time (meters/second) 0.030 0.024 0.034 

Scorch height (meters)   1.39   1.35   1.71 

Visual efficiency (completeness of burn in percentage)      85      92      99 

Severity (percent biomass consumed)      85      86      93 

 

 Calculated intensity values for early, middle, and late are shown in Table 6. While the 

minimum intensity increases over the fire season, the maximum intensity decreases. The 

standard deviation of the seasonal intensity values indicates high variability in these fires, 

especially in early season fires. Calculated intensity values ranged from 24.69 to 1395.36 kWm
-1

 

for all plots. Intensity is positively correlated to scorch height and visual efficiency but not 

correlated to fire severity (percent biomass consumed). Complete correlation matrix for all fires 

is found in Appendix A. 

TABLE 6. Intensity Values by Fire Season Timing for All Fires, kWm
-1

 

Fire season Minimum Maximum Mean + standard deviation 

Early 24.69 1395.36 223.29 + 273.51 

Middle 31.73 1273.28 189.23 + 232.80 

Late 58.46 0835.03 294.34 + 225.83 
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FIGURE 3. Changes in the Chandler Burning Index across the fire season. Weather data 

from Bamako, Mali over the time span of 2005 - 2015. 

 

 The Chandler Burning Index (CBI) was calculated at 54.667 for the early dry season, 

97.226 for the middle dry season, and 120.202 for the late dry season. The corresponding fire 

risk classifications are Moderate, Very High, and Extreme, respectively (see Table 3). 

 Running the three multiple regression types on the entire dataset results in three very 

different models. In the Enter method, wind speed at 0.052 is the closest variable to reaching 

significance, however the entire model is not significant, p = 0.300. The Forward method fails to 

create a model; no variables fit well enough to begin the regression. The Backwards regression 

analysis created seven models, removing variables with each iteration. The final Backwards 

model is significant at p = 0.033 with wind speed and temperature as the explanatory variables. 

For this model, the adjusted R
2
 = 0.059, indicating a poor fit of variables in the Backwards 

regression. 
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Analysis by Wind Direction 

FIGURE 4. Back fire with low flame heights and slow rate of spread.  Note the wind 

pushing the flames back over the previously burned area.     

 

 

FIGURE 5. Head fire with high flame heights and fast rate of spread. Note the wind 

pushing the flames forward toward the unburnt area. 
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The data were divided into two separate datasets based on wind direction at the time of 

the fire: head fires when the wind and the fire are traveling in the same direction and back fires 

when the wind and the fire are traveling in opposite directions. Figures 4 and 5 illustrate the 

visual differences between head and back fires under similar weather conditions and in similar 

fuels. The mean head fire intensity is 336.26 kWm
-1

, more than double the back fire mean 

intensity of 124.24 kWm
-1

. Head fires also display far more variation in intensity values, 

indicated by the standard deviations shown in Table 7.  

Intensity is not correlated to CBI in head fires but is significantly correlated in back fires. 

Scorch height, an accepted metric for estimating fire intensity, is significantly correlated with 

intensity in both head and back fires, but it is more strongly correlated in back fires than in head 

fires. CBI is correlated to scorch height in back fires only. In both head and back fires, CBI was 

positively correlated to the visual efficiency but not to the severity. Complete correlation 

matrices can be found at the beginning of Appendix B for head fires and Appendix C for back 

fires. 

TABLE 7. Intensity of Head and Back Fires for All Plots, kWm
-1

   

Fire type  Number Minimum Maximum Mean + standard deviation 

Head fire 40 48.5170 1395.362 336.262 +  312.76 

Back fire 43 24.6907 0476.937 124.241 +  084.93 

 All of the multiple regression analyses of the head fires dataset were unsuccessful. The 

Enter and Backward regressions failed to create significant models, their p value did not reach 

the level of significance of p = 0.05 (details in Table 8). Running the Forward model results in an 

error warning that no model can be created. Since none of the variables have adequate 

explanatory power, none are selected to begin the model.  
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TABLE 8. Head Fire Regression Model Statistics  

Model R R
2
adj F Sig F Valid 

Enter 0.545 0.297 1.640 0.154 No 

Backward 0.421 0.177 2.589 0.068 No 

Forward N/A N/A N/A N/A No 

Note: No significant models were created. Model details in Appendix B. 

  

 All back fire multiple regression models were significant at p = 0.05 or less. CBI and the 

two grass variables emerged as the explanatory variables in the Backward and Forward models. 

The Forward regression ran twice and the Backward regression ran five times. Excluded 

variables in both final models were humidity, day timing, annual/perennial, wind speed, 

temperature, and grass type by height. CBI was the only significant variable in the Enter 

regression model.  

TABLE 9. Back Fire Regression Model Statistics 

Model R R
2
adj F Sig f Valid Explanatory variable 

Enter 0.641 0.272 2.963 0.013 Yes CBI 

Backward 0.623 0.323 6.019 0.001 Yes CBI, grass by height 

Forward 0.518 0.232 7.334 0.002 Yes CBI, grass biomass percent 

Note: Model details in Appendix C.
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CHAPTER 4 

DISCUSSION  

Seasonal Differences in All Fires 

The primary goal of this study was to determine the driver(s) of fire intensity in an area 

of mesic Sudanian savanna. Using measurements from burning experiments in southwestern 

Mali in West Africa, this statistical analysis evaluated the role of seasonal timing in determining 

the intensity and severity of fires and explored the effect of wind direction on fire behavior. As 

noted, determination of the fire seasonality at regional and global scales is important for 

characterizing fire regimes, variation in biomass burning emissions, and fire climate impacts (Le 

Page et al. 2010; Zhang, Kondragunta, and Roy  2014). 

Seasonal timing is associated with dryness of fuels as well as fire-facilitating weather 

conditions. The calculated CBI values of 54.667 for the early dry season, 97.226 for the middle 

dry season, and 120.202 for the late dry season correspond to the fire risk classifications of 

Moderate, Very High, and Extreme (described in Table 3). These risk classifications align with 

assumed seasonal fire behavior (Smit et al. 2016). Although these risk classifications were 

originally based on North American forest fires, the CBI been used to indicate eco-climatic fire 

seasonality on both local and global scales (Roads et al. 2008; Le Page et al. 2010). While less 

sophisticated than other fire risk metrics that incorporate fuel structure, slope, or wind speed, the 

CBI's value lies in its simplicity. It is particularly well suited for application in areas lacking the 

detailed data other fire risk indices require.    

The measured bio-physical characteristics of the experimental plots accurately reflect 

conditions across the fire season. As the dry season progresses, this study found that average 

temperature increases while average humidity decreases. The percent grass biomass is greatest in 
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the early season, indicating an increase in the amount of leaf litter in the middle and late seasons. 

The characteristics of the experimental fires also vary by season. Mean visual efficiency (the 

completeness of a burn) and mean severity (the percent biomass consumed) both increase as the 

dry season progresses from early to middle to late. These observations fit well with how savanna 

landscapes and fires are believed to be effected by seasonal timing. Studies by Smit et al. (2010) 

in southern Africa, Werner and Prior (2013) in Australia, and Laris et al. (2016) in West Africa 

show similar seasonal changes. The significance of these seasonal changes lies in how they may 

affect the behavior of fires occurring in that season.  

 It is fairly well accepted that fires in different seasons behave differently with differences 

in flame height, fire intensity, and severity (Werner and Prior 2013), and that late dry season 

fires will burn more intensity and thus are more damaging to trees (Govender, Trollope, and Van 

Wilgen 2006; Smit et al. 2016; Laris et al. 2017). Fire timing, i.e., early, middle, or late dry 

season, appears to be a critical factor in determining fire intensity (Williams, Gill, and Moore 

1998; Higgins, Bond and Trollope 2000; Govender, Trollope, and Van Wilgen 2006; Laris et al. 

2016). Smit et al. (2016) found in their study that late dry season fires were more intense, had a 

higher scorch height, and consumed more fuel than early dry season fires. As noted, the selection 

of the three fires seasons reflects the actual fire practices of this region as most burning occurs 

during the middle of the dry season while also allowing for comparison with the values for early 

and late season fires of other studies (Laris et al. 2017). 

 In this study, the highest intensity fire occurred in the early dry season, and the early 

season fires also exhibited the greatest variation in intensity values (shown in Table 6). While the 

minimum intensity value increases as over the course of the dry season, the maximum intensity 

value decreases. Fires tend to become more intense as the dry season progresses, but they also 
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become more uniform with less variation in intensity. The middle dry season had the lowest 

mean intensity value, 189 kWm
-1

, and the late dry season had the highest mean intensity, 294 

kWm
-1

, with the early season mean intensity between them at 223 kWm
-1

. Interestingly, intensity 

was not correlated to fire severity, although intensity was correlated to scorch height and visual 

efficiency. This could indicate that some fires had a high rate of spread but a lower amount of 

biomass consumption, or inversely that slower fires were able to consume a greater amount of 

biomass due to their longer residence time. The potentially problematic ordinal variable, day 

timing, was significantly correlated only to temperature (positively) and wind speed (negatively). 

This accurately reflects increasing temperatures and decreasing wind speed over the duration of a 

typical day at that time of year. Day timing was dropped by all multiple regression analyses so is 

unlikely to affect the results. Future analysis will not require this variable.  

Fire intensity values calculated here were considerably less than those found by other 

studies. The mean intensity found by Williams, Gill, and Moore (1998) in their Australian 

savanna fire experiments was 4900 kWm
-1

, while Govender, Trollope, and Van Wilgen (2006) 

studying fire in South Africa calculated a mean intensity of 1775 kWm
-1

. Both of these values 

are considerably larger than 235.62 kWm
-1

, the mean calculated from this dataset. This is likely 

due to the greater fuel loads of their experimental sites, which in turn is strongly influenced by 

fire return interval. More rapid rates of spread may also contribute to the higher values found by 

other studies. Further, wind direction relative to fire direction is another likely factor explaining 

their higher intensity values and is addressed in detail in the section below.  

The results of the three multiple regression analyses of all fires, while all different, 

converge on a single meaningful conclusion. The Enter regression model failed to reach an 

acceptable level of significance, the Forward model failed to create any model at all, and the 
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Backwards model, although significant, is highly penalized as shown by the very low adjusted 

R
2
. Taken together, the results of these three regressions do not indicate that any of the tested 

variables clearly drive fire intensity. When looking at the entire experimental burn dataset, 

season, represented by CBI, does not determine a fire's intensity. 

Seasonal Differences by Fire Direction 

 To explore the impact of wind direction on fire behavior and intensity, the data was 

divided into head and back fire datasets, and analyses were run on them separately. The mean 

head fire intensity is 336.26 kWm
-1

, more than double the back fire mean intensity of 124.24 

kWm
-1

. Intensity is not correlated to CBI, the seasonal timing proxy, in head fires, but is 

significantly correlated in back fires. Intensity was correlated to fire severity only in back fires. 

Scorch height, an accepted metric for estimating fire intensity, is significantly correlated with 

intensity in both head and back fires, but more strongly correlated in back fires than in head fires. 

CBI is correlated to scorch height in back fires only. In both head and back fires, CBI was 

positively correlated to visual efficiency but not to severity. 

The multiple regression analysis of head fires failed to create successful models to 

determine the driver(s) of fire intensity. When the fire and the wind are traveling in the same 

direction, that fire characteristic overpowers the influence of all other potentially important 

variables. None of the tested variables have the power to explain fire intensity in head fires. In 

contrast, the three multiple regression analyses of back fires created three valid models with CBI, 

the seasonality proxy, the most significant driver in each model. For back fires, seasonal timing 

does drive fire intensity. The other explanatory variables, grass height in the Backward 

regression and percent grass biomass in the Forward regression, likely drive fire intensity by the 
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amount of fuel available. These results show similarities with some previous work on fire 

intensity but also significant divergence from others. 

The study by Trollope et al. (1996) found that back fires tended to be relatively uniform 

slow, cool fires with lower flame heights. The head fires in their study showed significant 

variation from slow moving, very low intensity fires (93 kWm
-1

) to rapidly moving, high 

intensity fires (3644 kWm
-1

) with tall flames. Comparing two sets of fire experiments in the 

same national park, Russell-Smith and Edwards (2006) describe how more significant effects 

were found on trees in the experiments conducted as head fires than in the experiments 

conducted as back fires. Even early season fires can be quite intense if burned with a head wind 

as noted by Cook, Liedloff, and Murphy (2015) in the Kapalga fire experiment in Australia. The 

highest calculated intensity in this study was in an early season head fire. Additionally, two of 

the explanatory variables for back fire intensity, CBI and percent grass biomass, are in 

opposition; the relative percentage of grass biomass available for combustion will decrease as the 

fire season progresses and leaf litter builds up. If intensity is moderated by the presence of leaf 

litter, fires occurring later in the season will be less intense despite seasonal factors promoting 

intensity. 

 Fire intensity is strongly related to wind direction. Of the studies that compare fires in 

similar fuels under similar conditions, head fires on average have higher intensity values than 

back fires (Trollope et al. 1996) Head fires are believed to have a greater effect on trees than on 

grasses while back fires have the potential to have a greater effect on grasses than on trees 

(Trollope, Trollope, and Hartnett 2002). However, many studies on fire intensity and ecological 

response fail to note the wind direction relative to the fires (Biggs et al. 2003; Smit et al. 2010; 

Smit et al. 2016). Other studies simply state that their goal was to achieve as high a burn 
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temperature as possible by setting late dry season fires (like the Marondera fire trials in 

Zimbabwe (Furley et al. 2008)) or to prove the damaging impacts of fire (like the Experimental 

Burn Plot fire trials in South Africa (Biggs et al. 2003)). Given the value-laden, anti-fire agenda 

of some of the longest running burning experiments, it would be plausible to assume that their 

fires were likely set as head fires, thus designed to be as damaging as possible. Descriptions of 

the behavior of the some of these historic fires provides support for this supposition (Aubréville 

1953).     

 Govender, Trollope, and Van Wilgen's (2006) study in South Africa estimated fire 

intensity for twenty-one years of experimental burns. Their lowest mean intensity was 1225 

kWm
-1

 in the early season, supporting the position that early season fires tend to be less intense 

than those occurring later in the dry season. However, in comparison to the fire intensity values 

calculated in this study, that number is quite large. Govender, Trollope, and Van Wilgen's lowest 

seasonal mean intensity is close to the maximum intensity values found in this study. The 

maximum intensity values calculated in this study are in the early and middle dry seasons, 1395 

and 1273 kWm
-1 

respectively. Govender, Trollope, and Van Wilgen's highest intensities, 11,000 

to 17,500 kWm
-1

, are about an order of magnitude greater than the highest intensities of this 

analysis. One important thing to note about Govender, Trollope, and Van Wilgen's fire study; all 

of their fires were set as head fires. A recent study in the cerrado savanna of South America 

found that the amount of dead fuel best explains fire intensity and flame height (Rissi et al. 

2017). They did not find significant differences in intensity or flame height across the early, 

middle, and late fire seasons. However, again, all of their experimental fires were set as head 

fires. 
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In addition, both of these studies were conducted in areas, either reserves or experimental 

stations, where indigenous and local populations have been removed and people are excluded 

from the landscape. In contrast, the mesic West African savanna of this study is well populated 

by people who may be grazing cattle and setting annual fires, reducing the potential burnable 

biomass and subsequent intensity (Laris 2011). This is a highly humanized system, and 

experiments in this "lived-in" savanna will help to more realistically explain fire behavior and 

ecological effects across other populated savanna landscapes.   

 While research indicates higher intensity fires are more damaging to woody growth 

(Govender, Trollope, and Van Wilgen 2006; Higgins et al. 2012; Werner and Prior 2013; Smit et 

al. 2016), the applicability of their results to the West Africa humanized savanna landscape is 

called into question by this study. Intensity values found in this analysis are more than an order 

of magnitude less than those reported in other studies. It is unknown if tree survival also varies 

from previous work in different savanna systems. More research is need to establish the 

relationship between fire intensity and ecological response in this landscape. Given the 

inconsistencies between intensity values found in prior research and in this analysis, it would be 

reasonable to postulate that ecological effects would also diverge from previous studies. 

Conclusions 

The variation in fire intensities found in this study reflect fundamental differences in the 

savanna landscapes found in across continents and regions, as well as potential experimental 

bias. Fires in sparsely populated and fairly homogenous landscapes like those found in the most 

frequently studied savannas possess distinct characteristics from those in more populous and 

patchier landscapes (Laris 2011). For the West African humanized savanna landscapes, fire 

behavior is dependent on wind direction. The results of this analysis show that head fires have a 
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higher average intensity and much greater variation than back fires. In head fires, none of the 

evaluated variables explains intensity. When the fire and the wind are traveling in the same 

direction, that fire characteristic overpowers the influence of all other potentially important 

variables. This is possibly due to the radiant heat of the head fire pre-heating the standing 

vegetation, thus moisture content (roughly dictated by seasonality) is a less significant factor. For 

back fires, timing within the fire season, as represented by CBI, does emerge as the explanatory 

variable. However, few studies note the wind direction of their experimental burns so it may be 

challenging to evaluate the influence of that factor on their intensity values. The commonly 

accepted relationship between timing within the fire season and intensity should be called into 

question if the impact of wind direction is not accounted for.  

In this study, wind direction determines the primary drivers of fire intensity. The 

statistically significant relationship between seasonal timing, grass variables, and back fire 

intensity aligns with previous savanna research. For head fires, an absence of explanatory 

variables indicates that the dynamics of these fires are significantly different from that of back 

fires. There have been few efforts to determine the amount of the African landscape burned by 

head or back fires. Given the impact of fire direction on fire intensity, it is likely that this 

variable is also a determinant of fire emissions and, in particular, greenhouse gas emissions. 

Future efforts could focus on estimating the amount of area fire burned as head or back fire using 

remotely sensed imagery and models. Certainly, additional research is needed to evaluate the 

role of wind direction in fire intensity in different savanna systems.   
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APPENDIX A 

MODEL DETAILS FOR ALL FIRES



 

 

    

CBI day_timing Wind_speed grass_percent humidity temp Grass by Ht An_Peren Flam_height (m) Eff_Visual Biom_cons % Intensity

Pearson Correlation 1 0.103 -0.092 -.302** -.596** .317** .248* .228* 0.142 .467** .265* 0.063

Sig. (2-tailed) 0.353 0.408 0.006 0.000 0.003 0.024 0.038 0.202 0.000 0.016 0.573

N 83 83 83 83 83 83 83 83 83 83 83 83

Pearson Correlation 0.103 1 -.402** -0.127 -0.076 .238* -0.031 0.075 0.117 0.188 0.112 0.020

Sig. (2-tailed) 0.353 0.000 0.251 0.493 0.030 0.783 0.503 0.294 0.089 0.312 0.856

N 83 83 83 83 83 83 83 83 83 83 83 83

Pearson Correlation -0.092 -.402** 1 0.092 .229* -.482** -0.031 -0.083 -0.016 -0.048 -0.018 0.105

Sig. (2-tailed) 0.408 0.000 0.408 0.037 0.000 0.784 0.456 0.884 0.668 0.874 0.346

N 83 83 83 83 83 83 83 83 83 83 83 83

Pearson Correlation -.302** -0.127 0.092 1 .238* -0.043 -.264* -.227* -0.036 0.006 -0.051 0.121

Sig. (2-tailed) 0.006 0.251 0.408 0.030 0.700 0.016 0.039 0.747 0.956 0.646 0.277

N 83 83 83 83 83 83 83 83 83 83 83 83

Pearson Correlation -.596** -0.076 .229* .238* 1 -.538** -.450** -.495** -0.203 -0.201 -0.075 -0.121

Sig. (2-tailed) 0.000 0.493 0.037 0.030 0.000 0.000 0.000 0.065 0.068 0.499 0.274

N 83 83 83 83 83 83 83 83 83 83 83 83

Pearson Correlation .317** .238* -.482** -0.043 -.538** 1 0.117 0.039 0.203 .321** .225* 0.183

Sig. (2-tailed) 0.003 0.030 0.000 0.700 0.000 0.292 0.727 0.066 0.003 0.041 0.098

N 83 83 83 83 83 83 83 83 83 83 83 83

Pearson Correlation .248* -0.031 -0.031 -.264* -.450** 0.117 1 .676** -0.027 -0.057 -0.201 -0.089

Sig. (2-tailed) 0.024 0.783 0.784 0.016 0.000 0.292 0.000 0.812 0.608 0.069 0.423

N 83 83 83 83 83 83 83 83 83 83 83 83

Pearson Correlation .228* 0.075 -0.083 -.227* -.495** 0.039 .676** 1 0.080 -0.028 -.221* -0.074

Sig. (2-tailed) 0.038 0.503 0.456 0.039 0.000 0.727 0.000 0.471 0.804 0.045 0.508

N 83 83 83 83 83 83 83 83 83 83 83 83

Pearson Correlation 0.142 0.117 -0.016 -0.036 -0.203 0.203 -0.027 0.080 1 .363** 0.065 .541**

Sig. (2-tailed) 0.202 0.294 0.884 0.747 0.065 0.066 0.812 0.471 0.001 0.562 0.000

N 83 83 83 83 83 83 83 83 83 83 83 83

Pearson Correlation .467** 0.188 -0.048 0.006 -0.201 .321** -0.057 -0.028 .363** 1 .393** .306**

Sig. (2-tailed) 0.000 0.089 0.668 0.956 0.068 0.003 0.608 0.804 0.001 0.000 0.005

N 83 83 83 83 83 83 83 83 83 83 83 83

Pearson Correlation .265* 0.112 -0.018 -0.051 -0.075 .225* -0.201 -.221* 0.065 .393** 1 0.134

Sig. (2-tailed) 0.016 0.312 0.874 0.646 0.499 0.041 0.069 0.045 0.562 0.000 0.226

N 83 83 83 83 83 83 83 83 83 83 83 83

Pearson Correlation 0.063 0.020 0.105 0.121 -0.121 0.183 -0.089 -0.074 .541** .306** 0.134 1

Sig. (2-tailed) 0.573 0.856 0.346 0.277 0.274 0.098 0.423 0.508 0.000 0.005 0.226

N 83 83 83 83 83 83 83 83 83 83 83 83

Intensity

**. Correlation is signif icant at the 0.01 level (2-tailed).

*. Correlation is signif icant at the 0.05 level (2-tailed).

Flam_height (m)

Eff_Visual

Biom_cons %

Wind_speed 

grass_percent

humidity

temp

Grass by Ht

An_Peren

Correlations

CBI

day_timing

3
7
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Enter Regression 

Variables Entered

Variables 

Removed Method

1 An_Peren, ambient_temp, grass_biomass_%, 

day_timing, CBI, Wind_speed (m/s), Grass by Ht, 

humidity
b

Enter

Variables Entered/Removeda

Model

a. Dependent Variable: Intensity_act_dry

b. All requested variables entered.
 

R R Square

Adjusted 

R Square

Std. Error 

of the 

Estimate

1 .341
a 0.116 0.021 245.53

Model Summary

Model

a. Predictors: (Constant), An_Peren, ambient_temp, 

grass_biomass_%, day_timing, CBI, Wind_speed (m/s), Grass by Ht, 
 

Sum of 

Squares df

Mean 

Square F Sig.

Regression 588261.08 8 73532.635 1.220 .300
b

Residual 4461209.58 74 60286.616

Total 5049470.66 82

ANOVAa

Model

1

a. Dependent Variable: Intensity_act_dry

b. Predictors: (Constant), An_Peren, ambient_temp, grass_biomass_%, day_timing, CBI, 

Wind_speed (m/s), Grass by Ht, humidity
 

Standardiz

ed 

Coefficient

s

B Std. Error Beta

(Constant) -349.531 530.993 -0.658 0.512

CBI -0.177 1.321 -0.019 -0.134 0.894

day_timing 21.151 35.190 0.074 0.601 0.550

Wind_speed (m/s) 111.211 56.216 0.265 1.978 0.052

grass_biomass_% 115.238 126.304 0.108 0.912 0.365

humidity -5.366 6.187 -0.160 -0.867 0.389

ambient_temp 15.254 10.141 0.233 1.504 0.137

Grass by Ht -12.585 15.973 -0.121 -0.788 0.433

An_Peren -13.092 62.976 -0.034 -0.208 0.836

a. Dependent Variable: Intensity_act_dry

Coefficientsa

Model

Unstandardized 

Coefficients

t Sig.

1
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Backward Regression 

 

Variables Entered

Variables 

Removed Method

1 An_Peren, ambient_temp, 

grass_biomass_%, day_timing, CBI, 

Wind_speed (m/s), Grass by Ht, humidity
b

Enter

2 CBI Backward (criterion: Probability 

of F-to-remove >= .100).

3 An_Peren Backward (criterion: Probability 

of F-to-remove >= .100).

4 day_timing Backward (criterion: Probability 

of F-to-remove >= .100).

5 humidity Backward (criterion: Probability 

of F-to-remove >= .100).

6 grass_bio

mass_%

Backward (criterion: Probability 

of F-to-remove >= .100).

7 Grass by Ht Backward (criterion: Probability 

of F-to-remove >= .100).

Variables Entered/Removeda

Model

a. Dependent Variable: Intensity_act_dry

b. All requested variables entered.
 

 

R R Square Adjusted R Square

Std. Error 

of the 

Estimate

1 .341
a 0.116 0.021 245.53

2 .341
b 0.116 0.034 243.92

3 .340
c 0.116 0.046 242.37

4 .335
d 0.112 0.054 241.32

5 .320
e 0.103 0.057 241.03

6 .309
f 0.096 0.061 240.42

7 .286
g 0.082 0.059 240.74

f. Predictors: (Constant), ambient_temp, Wind_speed (m/s), Grass by Ht

g. Predictors: (Constant), ambient_temp, Wind_speed (m/s)

d. Predictors: (Constant), ambient_temp, grass_biomass_%, Wind_speed (m/s), Grass by Ht, 

humiditye. Predictors: (Constant), ambient_temp, grass_biomass_%, Wind_speed (m/s), Grass by Ht

Model Summary

Model

a. Predictors: (Constant), An_Peren, ambient_temp, grass_biomass_%, day_timing, CBI, 

Wind_speed (m/s), Grass by Ht, humidityb. Predictors: (Constant), An_Peren, ambient_temp, grass_biomass_%, day_timing, Wind_speed 

(m/s), Grass by Ht, humidityc. Predictors: (Constant), ambient_temp, grass_biomass_%, day_timing, Wind_speed (m/s), 

Grass by Ht, humidity
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Sum of 

Squares df Mean Square F Sig.

Regression 588261.08 8 73532.635 1.220 .300
b

Residual 4461209.58 74 60286.616

Total 5049470.66 82

Regression 587176.39 7 83882.342 1.410 .214
c

Residual 4462294.27 75 59497.257

Total 5049470.66 82

Regression 584900.82 6 97483.470 1.659 .143
d

Residual 4464569.84 76 58744.340

Total 5049470.66 82

Regression 565311.09 5 113062.218 1.941 .097
e

Residual 4484159.58 77 58235.839

Total 5049470.66 82

Regression 518124.92 4 129531.230 2.230 .073
f

Residual 4531345.74 78 58094.176

Total 5049470.66 82

Regression 483274.10 3 161091.365 2.787 .046
g

Residual 4566196.57 79 57799.957

Total 5049470.66 82

Regression 413115.12 2 206557.561 3.564 .033
h

Residual 4636355.54 80 57954.444

Total 5049470.66 82

h. Predictors: (Constant), ambient_temp, Wind_speed (m/s)

b. Predictors: (Constant), An_Peren, ambient_temp, grass_biomass_%, day_timing, CBI, Wind_speed 

(m/s), Grass by Ht, humidityc. Predictors: (Constant), An_Peren, ambient_temp, grass_biomass_%, day_timing, Wind_speed 

(m/s), Grass by Ht, humidityd. Predictors: (Constant), ambient_temp, grass_biomass_%, day_timing, Wind_speed (m/s), Grass by 

Ht, humiditye. Predictors: (Constant), ambient_temp, grass_biomass_%, Wind_speed (m/s), Grass by Ht, humidity

f. Predictors: (Constant), ambient_temp, grass_biomass_%, Wind_speed (m/s), Grass by Ht

g. Predictors: (Constant), ambient_temp, Wind_speed (m/s), Grass by Ht

a. Dependent Variable: Intensity_act_dry

ANOVAa

Model

1

2

3

4

5

6

7
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Standardized 

Coefficients

B Std. Error Beta

(Constant) -349.531 530.993 -0.658 0.512

CBI -0.177 1.321 -0.019 -0.134 0.894

day_timing 21.151 35.190 0.074 0.601 0.550

Wind_speed (m/s) 111.211 56.216 0.265 1.978 0.052

grass_biomass_% 115.238 126.304 0.108 0.912 0.365

humidity -5.366 6.187 -0.160 -0.867 0.389

ambient_temp 15.254 10.141 0.233 1.504 0.137

Grass by Ht -12.585 15.973 -0.121 -0.788 0.433

An_Peren -13.092 62.976 -0.034 -0.208 0.836

(Constant) -376.538 488.111 -0.771 0.443

day_timing 20.722 34.814 0.072 0.595 0.553

Wind_speed (m/s) 110.502 55.599 0.263 1.987 0.051

grass_biomass_% 118.785 122.693 0.112 0.968 0.336

humidity -4.967 5.389 -0.148 -0.922 0.360

ambient_temp 15.255 10.074 0.233 1.514 0.134

Grass by Ht -12.608 15.867 -0.122 -0.795 0.429

An_Peren -12.161 62.181 -0.032 -0.196 0.845

(Constant) -417.122 438.997 -0.950 0.345

day_timing 19.788 34.266 0.069 0.577 0.565

Wind_speed (m/s) 111.579 54.975 0.266 2.030 0.046

grass_biomass_% 118.236 121.882 0.111 0.970 0.335

humidity -4.550 4.919 -0.136 -0.925 0.358

ambient_temp 15.874 9.504 0.243 1.670 0.099

Grass by Ht -14.394 12.894 -0.139 -1.116 0.268

(Constant) -361.537 426.457 -0.848 0.399

Wind_speed (m/s) 101.223 51.742 0.241 1.956 0.054

grass_biomass_% 109.440 120.402 0.103 0.909 0.366

humidity -4.402 4.891 -0.131 -0.900 0.371

ambient_temp 16.332 9.430 0.250 1.732 0.087

Grass by Ht -14.797 12.819 -0.143 -1.154 0.252

(Constant) -619.712 315.215 -1.966 0.053

Wind_speed (m/s) 103.344 51.626 0.246 2.002 0.049

grass_biomass_% 91.916 118.673 0.087 0.775 0.441

ambient_temp 20.707 8.071 0.316 2.566 0.012

Grass by Ht -9.933 11.610 -0.096 -0.855 0.395

(Constant) -548.852 300.881 -1.824 0.072

Wind_speed (m/s) 107.040 51.274 0.255 2.088 0.040

ambient_temp 20.916 8.046 0.320 2.600 0.011

Grass by Ht -12.306 11.170 -0.119 -1.102 0.274

(Constant) -558.989 301.142 -1.856 0.067

Wind_speed (m/s) 105.361 51.320 0.251 2.053 0.043

ambient_temp 19.881 8.001 0.304 2.485 0.015

Coefficients
a

Model

Unstandardized Coefficients

t Sig.

7

a. Dependent Variable: Intensity_act_dry

6

1

2

3

4

5
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Collinearit

y Statistics

Tolerance

2 CBI -.019
b -0.134 0.894 -0.016 0.599

CBI -.016
c -0.113 0.911 -0.013 0.607

An_Peren -.032
c -0.196 0.845 -0.023 0.443

CBI -.010
d -0.069 0.945 -0.008 0.610

An_Peren -.019
d -0.115 0.908 -0.013 0.452

day_timing .069
d 0.577 0.565 0.066 0.819

CBI .044
e 0.366 0.716 0.042 0.789

An_Peren .036
e 0.240 0.811 0.027 0.531

day_timing .063
e 0.531 0.597 0.060 0.822

humidity -.131
e -0.900 0.371 -0.102 0.543

CBI .017
f 0.145 0.885 0.016 0.850

An_Peren .029
f 0.195 0.846 0.022 0.533

day_timing .051
f 0.437 0.664 0.049 0.833

humidity -.110
f -0.764 0.447 -0.086 0.558

grass_biomass_% .087
f 0.775 0.441 0.087 0.922

CBI -.012
g -0.102 0.919 -0.011 0.895

An_Peren -.065
g -0.603 0.549 -0.068 0.993

day_timing .058
g 0.495 0.622 0.056 0.836

humidity -.022
g -0.170 0.865 -0.019 0.709

grass_biomass_% .112
g 1.039 0.302 0.116 0.992

Grass by Ht -.119
g -1.102 0.274 -0.123 0.985

g. Predictors in the Model: (Constant), ambient_temp, Wind_speed (m/s)

3

4

5

6

7

a. Dependent Variable: Intensity_act_dry

b. Predictors in the Model: (Constant), An_Peren, ambient_temp, grass_biomass_%, day_timing, 

Wind_speed (m/s), Grass by Ht, humidityc. Predictors in the Model: (Constant), ambient_temp, grass_biomass_%, day_timing, Wind_speed 

(m/s), Grass by Ht, humidityd. Predictors in the Model: (Constant), ambient_temp, grass_biomass_%, Wind_speed (m/s), Grass by 

Ht, humiditye. Predictors in the Model: (Constant), ambient_temp, grass_biomass_%, Wind_speed (m/s), Grass by 

Htf. Predictors in the Model: (Constant), ambient_temp, Wind_speed (m/s), Grass by Ht

Model Beta In t Sig.

Partial 

Correlatio

n

Excluded Variablesa

 

 

  



 

43 

 

APPENDIX B 

MODEL DETAILS FOR HEAD FIRES 

 



 

 

 

 

CBI day_timing Wind_speed grass_percent humidity temp Grass by Ht An_Peren Flam_height (m) Eff_Visual Biom_cons % Intensity

Pearson Correlation 1 0.221 -0.216 -.412
**

-.604
**

.383
*

.369
*

.334
* 0.141 .523

** 0.267 0.070

Sig. (2-tailed) 0.171 0.181 0.008 0.000 0.015 0.019 0.035 0.384 0.001 0.096 0.668

N 40 40 40 40 40 40 40 40 40 40 40 40

Pearson Correlation 0.221 1 -.621
** -0.053 -0.088 0.151 -0.038 0.124 0.135 0.198 0.210 0.005

Sig. (2-tailed) 0.171 0.000 0.747 0.591 0.354 0.818 0.444 0.407 0.220 0.193 0.978

N 40 40 40 40 40 40 40 40 40 40 40 40

Pearson Correlation -0.216 -.621
** 1 0.079 0.275 -.463

** -0.065 -0.209 0.052 -0.036 -0.123 0.222

Sig. (2-tailed) 0.181 0.000 0.628 0.086 0.003 0.690 0.196 0.751 0.825 0.449 0.169

N 40 40 40 40 40 40 40 40 40 40 40 40

Pearson Correlation -.412
** -0.053 0.079 1 0.248 -0.007 -0.308 -0.201 0.145 0.062 -0.139 0.243

Sig. (2-tailed) 0.008 0.747 0.628 0.122 0.964 0.053 0.214 0.372 0.706 0.393 0.131

N 40 40 40 40 40 40 40 40 40 40 40 40

Pearson Correlation -.604
** -0.088 0.275 0.248 1 -.502

**
-.524

**
-.568

** -0.207 -0.254 -0.050 -0.131

Sig. (2-tailed) 0.000 0.591 0.086 0.122 0.001 0.001 0.000 0.201 0.114 0.761 0.420

N 40 40 40 40 40 40 40 40 40 40 40 40

Pearson Correlation .383
* 0.151 -.463

** -0.007 -.502
** 1 0.109 0.069 0.152 0.304 .324

* 0.128

Sig. (2-tailed) 0.015 0.354 0.003 0.964 0.001 0.503 0.674 0.348 0.057 0.041 0.432

N 40 40 40 40 40 40 40 40 40 40 40 40

Pearson Correlation .369
* -0.038 -0.065 -0.308 -.524

** 0.109 1 .665
** 0.018 -0.026 -0.152 -0.162

Sig. (2-tailed) 0.019 0.818 0.690 0.053 0.001 0.503 0.000 0.914 0.873 0.348 0.319

N 40 40 40 40 40 40 40 40 40 40 40 40

Pearson Correlation .334
* 0.124 -0.209 -0.201 -.568

** 0.069 .665
** 1 0.201 0.117 -.342

* -0.134

Sig. (2-tailed) 0.035 0.444 0.196 0.214 0.000 0.674 0.000 0.214 0.474 0.031 0.408

N 40 40 40 40 40 40 40 40 40 40 40 40

Pearson Correlation 0.141 0.135 0.052 0.145 -0.207 0.152 0.018 0.201 1 .369
* 0.083 .420

**

Sig. (2-tailed) 0.384 0.407 0.751 0.372 0.201 0.348 0.914 0.214 0.019 0.612 0.007

N 40 40 40 40 40 40 40 40 40 40 40 40

Pearson Correlation .523
** 0.198 -0.036 0.062 -0.254 0.304 -0.026 0.117 .369

* 1 .449
**

.367
*

Sig. (2-tailed) 0.001 0.220 0.825 0.706 0.114 0.057 0.873 0.474 0.019 0.004 0.020

N 40 40 40 40 40 40 40 40 40 40 40 40

Pearson Correlation 0.267 0.210 -0.123 -0.139 -0.050 .324
* -0.152 -.342

* 0.083 .449
** 1 0.231

Sig. (2-tailed) 0.096 0.193 0.449 0.393 0.761 0.041 0.348 0.031 0.612 0.004 0.152

N 40 40 40 40 40 40 40 40 40 40 40 40

Pearson Correlation 0.070 0.005 0.222 0.243 -0.131 0.128 -0.162 -0.134 .420
**

.367
* 0.231 1

Sig. (2-tailed) 0.668 0.978 0.169 0.131 0.420 0.432 0.319 0.408 0.007 0.020 0.152

N 40 40 40 40 40 40 40 40 40 40 40 40

Intensity

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

c. Cannot be computed because at least one of the variables is constant.

Flam_height 

(m)

Eff_Visual

Biom_cons %

Wind_speed 

grass_percent

humidity

temp

Grass by Ht

An_Peren

Correlations

CBI

day_timing
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Enter Regression 

Variables Entered

Variables 

Removed Method

1 An_Peren, ambient_temp, day_timing, 

grass_biomass_%, CBI, Grass by Ht, Wind_speed 

(m/s), humidity
b

Enter

Variables Entered/Removeda

Model

a. Dependent Variable: Intensity_act_dry

b. All requested variables entered.
 

 

R R Square

Adjusted R 

Square

Std. Error of the 

Estimate

1 .545
a 0.297 0.116 294.07

Model Summary

Model

a. Predictors: (Constant), An_Peren, ambient_temp, day_timing, 

grass_biomass_%, CBI, Grass by Ht, Wind_speed (m/s), humidity
 

 

Sum of 

Squares df Mean Square F Sig.

Regression 1134243.61 8 141780.45 1.640 .154
b

Residual 2680737.59 31 86475.406

Total 3814981.19 39

ANOVAa

Model

1

a. Dependent Variable: Intensity_act_dry

b. Predictors: (Constant), An_Peren, ambient_temp, day_timing, grass_biomass_%, CBI, Grass by 

Ht, Wind_speed (m/s), humidity
 

 

Standardized 

Coefficients

B Std. Error Beta

(Constant) -445.030 957.312 -0.465 0.645

CBI 0.555 2.453 0.048 0.226 0.822

day_timing 106.575 76.026 0.286 1.402 0.171

Wind_speed (m/s) 294.789 126.661 0.525 2.327 0.027

grass_biomass_% 291.973 203.092 0.248 1.438 0.161

humidity -15.524 10.248 -0.378 -1.515 0.140

ambient_temp 13.087 18.330 0.151 0.714 0.481

Grass by Ht -22.246 25.611 -0.188 -0.869 0.392

An_Peren -58.600 106.428 -0.126 -0.551 0.586

1

a. Dependent Variable: Intensity_act_dry

Coefficients
a

Model

Unstandardized Coefficients

t Sig.
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Backward Regression 

Variables Entered Variables Removed Method

1 An_Peren, ambient_temp, day_timing, 

grass_biomass_%, CBI, Grass by Ht, 

Wind_speed (m/s), humidity
b

Enter

2 CBI Backward (criterion: 

Probability of F-to-remove 

>= .100).

3 An_Peren Backward (criterion: 

Probability of F-to-remove 

>= .100).

4 temp Backward (criterion: 

Probability of F-to-remove 

>= .100).

5 day_timing Backward (criterion: 

Probability of F-to-remove 

>= .100).

6 grass_percent Backward (criterion: 

Probability of F-to-remove 

>= .100).

Variables Entered/Removeda

Model

a. Dependent Variable: Intensity_act_dry

b. All requested variables entered.
 

 

R R Square Adjusted R Square

Std. Error of the 

Estimate

1 .545
a 0.297 0.116 294.07

2 .544
b 0.296 0.142 289.67

3 .538
c 0.289 0.160 286.67

4 .516
d 0.267 0.159 286.84

5 .476
e 0.227 0.138 290.35

6 .421
f 0.177 0.109 295.24

Model Summary

Model

a. Predictors: (Constant), An_Peren, ambient_temp, day_timing, grass_biomass_%, 

CBI, Grass by Ht, Wind_speed (m/s), humidityb. Predictors: (Constant), An_Peren, ambient_temp, day_timing, grass_biomass_%, 

Grass by Ht, Wind_speed (m/s), humidityc. Predictors: (Constant), ambient_temp, day_timing, grass_biomass_%, Grass by Ht, 

Wind_speed (m/s), humidityd. Predictors: (Constant), day_timing, grass_biomass_%, Grass by Ht, Wind_speed 

(m/s), humiditye. Predictors: (Constant), grass_biomass_%, Grass by Ht, Wind_speed (m/s), humidity

f. Predictors: (Constant), Grass by Ht, Wind_speed (m/s), humidity
 

  



 

47 

 

 

Sum of 

Squares df Mean Square F Sig.

Regression 1134243.606 8 141780.451 1.640 .154
b

Residual 2680737.588 31 86475.406

Total 3814981.194 39

Regression 1129810.212 7 161401.459 1.923 .098
c

Residual 2685170.982 32 83911.593

Total 3814981.194 39

Regression 1103028.152 6 183838.025 2.237 .064
d

Residual 2711953.042 33 82180.395

Total 3814981.194 39

Regression 1017466.017 5 203493.203 2.473 .052
e

Residual 2797515.177 34 82279.858

Total 3814981.194 39

Regression 864464.023 4 216116.006 2.564 .055
f

Residual 2950517.170 35 84300.491

Total 3814981.194 39

Regression 677066.843 3 225688.948 2.589 .068
g

Residual 3137914.351 36 87164.288

Total 3814981.194 39

e. Predictors: (Constant), day_timing, grass_biomass_%, Grass by Ht, Wind_speed (m/s), humidity

f. Predictors: (Constant), grass_biomass_%, Grass by Ht, Wind_speed (m/s), humidity

g. Predictors: (Constant), Grass by Ht, Wind_speed (m/s), humidity

ANOVAa

Model

1

2

3

4

c. Predictors: (Constant), An_Peren, ambient_temp, day_timing, grass_biomass_%, Grass by Ht, 

Wind_speed (m/s), humidityd. Predictors: (Constant), ambient_temp, day_timing, grass_biomass_%, Grass by Ht, Wind_speed 

(m/s), humidity

5

6

a. Dependent Variable: Intensity_act_dry

b. Predictors: (Constant), An_Peren, ambient_temp, day_timing, grass_biomass_%, CBI, Grass by 

Ht, Wind_speed (m/s), humidity
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Standardized 

Coefficients

B Std. Error Beta

(Constant) -445.030 957.312 -0.465 0.645

CBI 0.555 2.453 0.048 0.226 0.822

day_timing 106.575 76.026 0.286 1.402 0.171

Wind_speed (m/s) 294.789 126.661 0.525 2.327 0.027

grass_biomass_% 291.973 203.092 0.248 1.438 0.161

humidity -15.524 10.248 -0.378 -1.515 0.140

ambient_temp 13.087 18.330 0.151 0.714 0.481

Grass by Ht -22.246 25.611 -0.188 -0.869 0.392

An_Peren -58.600 106.428 -0.126 -0.551 0.586

(Constant) -411.763 931.842 -0.442 0.662

day_timing 111.055 72.311 0.298 1.536 0.134

Wind_speed (m/s) 299.452 123.109 0.534 2.432 0.021

grass_biomass_% 275.809 187.292 0.234 1.473 0.151

humidity -16.391 9.364 -0.399 -1.750 0.090

ambient_temp 13.904 17.703 0.160 0.785 0.438

Grass by Ht -21.864 25.173 -0.185 -0.869 0.392

An_Peren -59.210 104.805 -0.128 -0.565 0.576

(Constant) -632.218 837.427 -0.755 0.456

day_timing 108.764 71.448 0.292 1.522 0.137

Wind_speed (m/s) 311.371 120.030 0.555 2.594 0.014

grass_biomass_% 265.708 184.504 0.225 1.440 0.159

humidity -14.183 8.421 -0.345 -1.684 0.102

ambient_temp 16.999 16.660 0.196 1.020 0.315

Grass by Ht -29.219 21.322 -0.247 -1.370 0.180

(Constant) 128.215 382.174 0.335 0.739

day_timing 95.978 70.383 0.258 1.364 0.182

Wind_speed (m/s) 261.659 109.764 0.466 2.384 0.023

grass_biomass_% 287.417 183.384 0.244 1.567 0.126

humidity -18.213 7.442 -0.443 -2.447 0.020

Grass by Ht -32.924 21.023 -0.278 -1.566 0.127

(Constant) 495.676 274.312 1.807 0.079

Wind_speed (m/s) 168.961 87.232 0.301 1.937 0.061

grass_biomass_% 276.491 185.445 0.234 1.491 0.145

humidity -17.478 7.513 -0.425 -2.326 0.026

Grass by Ht -34.569 21.245 -0.292 -1.627 0.113

(Constant) 702.776 240.528 2.922 0.006

Wind_speed (m/s) 173.278 88.653 0.309 1.955 0.058

humidity -16.431 7.606 -0.400 -2.160 0.037

Grass by Ht -41.487 21.081 -0.351 -1.968 0.057

a. Dependent Variable: Intensity_act_dry

Coefficientsa

Model

Unstandardized Coefficients

t Sig.

1

2

3

4

5

6
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Collinearity 

Statistics

Tolerance

2 CBI .048
b 0.226 0.822 0.041 0.507

CBI .051
c 0.243 0.809 0.043 0.507

An_Peren -.128
c -0.565 0.576 -0.099 0.430

CBI .093
d 0.454 0.653 0.079 0.532

An_Peren -.183
d -0.855 0.399 -0.147 0.475

ambient_temp .196
d 1.020 0.315 0.175 0.584

CBI .147
e 0.737 0.466 0.125 0.559

An_Peren -.149
e -0.691 0.494 -0.118 0.481

ambient_temp .145
e 0.751 0.458 0.128 0.603

day_timing .258
e 1.364 0.182 0.228 0.604

CBI .039
f 0.202 0.841 0.034 0.628

An_Peren -.133
f -0.604 0.550 -0.102 0.482

ambient_temp .177
f 0.913 0.367 0.153 0.612

day_timing .245
f 1.270 0.212 0.210 0.605

grass_biomass_% .234
f 1.491 0.145 0.244 0.893

f. Predictors in the Model: (Constant), Grass by Ht, Wind_speed (m/s), humidity

Excluded Variablesa

Model Beta In t Sig.

Partial 

Correlation

3

4

5

6

a. Dependent Variable: Intensity_act_dry

b. Predictors in the Model: (Constant), An_Peren, ambient_temp, day_timing, grass_biomass_%, Grass by 

Ht, Wind_speed (m/s), humidityc. Predictors in the Model: (Constant), ambient_temp, day_timing, grass_biomass_%, Grass by Ht, 

Wind_speed (m/s), humidityd. Predictors in the Model: (Constant), day_timing, grass_biomass_%, Grass by Ht, Wind_speed (m/s), 

humiditye. Predictors in the Model: (Constant), grass_biomass_%, Grass by Ht, Wind_speed (m/s), humidity
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APPENDIX C 

MODEL DETAILS FOR BACK FIRES 

  



 

 

  

CBI day_timing Wind_speed grass_percent humidity temp Grass by Ht An_Peren Flam_height (m) Eff_Visual Biom_cons % Intensity

Pearson Correlation 1 0.009 0.000 -0.229 -.595
** 0.294 0.147 0.146 .317

*
.491

** 0.228 .429
**

Sig. (2-tailed) 0.952 0.999 0.140 0.000 0.056 0.347 0.349 0.039 0.001 0.141 0.004

N 43 43 43 43 43 43 43 43 43 43 43 43

Pearson Correlation 0.009 1 -0.230 -0.209 -0.067 .303
* -0.036 0.022 0.081 0.182 0.028 -0.008

Sig. (2-tailed) 0.952 0.139 0.179 0.668 0.048 0.821 0.890 0.607 0.243 0.858 0.962

N 43 43 43 43 43 43 43 43 43 43 43 43

Pearson Correlation 0.000 -0.230 1 0.095 0.193 -.492
** 0.016 0.035 -0.042 -0.046 0.072 0.011

Sig. (2-tailed) 0.999 0.139 0.545 0.215 0.001 0.917 0.822 0.791 0.770 0.648 0.944

N 43 43 43 43 43 43 43 43 43 43 43 43

Pearson Correlation -0.229 -0.209 0.095 1 0.243 -0.048 -0.157 -0.240 -0.136 0.001 0.003 0.185

Sig. (2-tailed) 0.140 0.179 0.545 0.116 0.760 0.315 0.120 0.385 0.993 0.986 0.236

N 43 43 43 43 43 43 43 43 43 43 43 43

Pearson Correlation -.595
** -0.067 0.193 0.243 1 -.581

**
-.374

*
-.425

** -0.265 -0.184 -0.106 -0.266

Sig. (2-tailed) 0.000 0.668 0.215 0.116 0.000 0.013 0.005 0.086 0.237 0.500 0.085

N 43 43 43 43 43 43 43 43 43 43 43 43

Pearson Correlation 0.294 .303
*

-.492
** -0.048 -.581

** 1 0.105 -0.005 0.206 .325
* 0.179 .351

*

Sig. (2-tailed) 0.056 0.048 0.001 0.760 0.000 0.503 0.976 0.185 0.033 0.251 0.021

N 43 43 43 43 43 43 43 43 43 43 43 43

Pearson Correlation 0.147 -0.036 0.016 -0.157 -.374
* 0.105 1 .687

** -0.243 -0.112 -0.229 -0.211

Sig. (2-tailed) 0.347 0.821 0.917 0.315 0.013 0.503 0.000 0.117 0.475 0.140 0.174

N 43 43 43 43 43 43 43 43 43 43 43 43

Pearson Correlation 0.146 0.022 0.035 -0.240 -.425
** -0.005 .687

** 1 -0.150 -0.137 -0.043 -0.156

Sig. (2-tailed) 0.349 0.890 0.822 0.120 0.005 0.976 0.000 0.337 0.382 0.782 0.319

N 43 43 43 43 43 43 43 43 43 43 43 43

Pearson Correlation .317
* 0.081 -0.042 -0.136 -0.265 0.206 -0.243 -0.150 1 .377

* 0.283 .716
**

Sig. (2-tailed) 0.039 0.607 0.791 0.385 0.086 0.185 0.117 0.337 0.013 0.066 0.000

N 43 43 43 43 43 43 43 43 43 43 43 43

Pearson Correlation .491
** 0.182 -0.046 0.001 -0.184 .325

* -0.112 -0.137 .377
* 1 .453

**
.439

**

Sig. (2-tailed) 0.001 0.243 0.770 0.993 0.237 0.033 0.475 0.382 0.013 0.002 0.003

N 43 43 43 43 43 43 43 43 43 43 43 43

Pearson Correlation 0.228 0.028 0.072 0.003 -0.106 0.179 -0.229 -0.043 0.283 .453
** 1 .398

**

Sig. (2-tailed) 0.141 0.858 0.648 0.986 0.500 0.251 0.140 0.782 0.066 0.002 0.008

N 43 43 43 43 43 43 43 43 43 43 43 43

Pearson Correlation .429
** -0.008 0.011 0.185 -0.266 .351

* -0.211 -0.156 .716
**

.439
**

.398
** 1

Sig. (2-tailed) 0.004 0.962 0.944 0.236 0.085 0.021 0.174 0.319 0.000 0.003 0.008

N 43 43 43 43 43 43 43 43 43 43 43 43

Intensity

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

c. Cannot be computed because at least one of the variables is constant.

Flam_height (m)

Eff_Visual

Biom_cons %

Wind_speed

grass_percent

humidity

temp

Grass by Ht

An_Peren

Correlations

CBI

day_timing

5
1
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Enter Regression 

Variables Entered

Variables 

Removed Method

1 An_Peren, ambient_temp, 

grass_biomass_%, day_timing, CBI, 

Wind_speed (m/s), Grass by Ht, humidity
b

Enter

Variables Entered/Removeda

Model

a. Dependent Variable: Intensity_act_dry

b. All requested variables entered.
 

 

R R Square

Adjusted R 

Square

Std. Error of the 

Estimate

1 .641
a 0.411 0.272 72.45

Model Summary

Model

a. Predictors: (Constant), An_Peren, ambient_temp, grass_biomass_%, day_timing, 

CBI, Wind_speed (m/s), Grass by Ht, humidity
 

 

Sum of 

Squares df Mean Square F Sig.

Regression 124451.38 8 15556.422 2.963 .013
b

Residual 178490.53 34 5249.722

Total 302941.91 42

b. Predictors: (Constant), An_Peren, ambient_temp, grass_biomass_%, day_timing, CBI, 

Wind_speed (m/s), Grass by Ht, humidity

ANOVAa

Model

1

a. Dependent Variable: Intensity_act_dry

 

Standardized 

Coefficients

B Std. Error Beta

(Constant) -341.632 226.765 -1.507 0.141

CBI 1.378 0.555 0.422 2.482 0.018

day_timing -4.960 13.881 -0.052 -0.357 0.723

Wind_speed (m/s) 22.168 21.105 0.163 1.050 0.301

grass_biomass_% 101.276 62.650 0.233 1.617 0.115

humidity 0.290 2.715 0.025 0.107 0.915

ambient_temp 8.204 4.453 0.382 1.843 0.074

Grass by Ht -12.554 7.369 -0.315 -1.704 0.098

An_Peren 8.432 27.394 0.063 0.308 0.760

a. Dependent Variable: Intensity_act_dry

Coefficientsa

Model

Unstandardized Coefficients

t Sig.

1
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Forward Regression 

 

Variables Entered

Variables 

Removed Method

1 CBI Forward (Criterion: Probability-

of-F-to-enter <= .050)

2 grass_biomass_% Forward (Criterion: Probability-

of-F-to-enter <= .050)

Variables Entered/Removeda

Model

a. Dependent Variable: Intensity_act_dry
 

 

R R Square Adjusted R Square Std. Error of the Estimate

1 .429
a 0.184 0.164 77.66

2 .518
b 0.268 0.232 74.44

Model Summary

Model

a. Predictors: (Constant), CBI

b. Predictors: (Constant), CBI, grass_biomass_%
 

 

Sum of 

Squares df Mean Square F Sig.

Regression 55681.089 1 55681.089 9.233 .004
b

Residual 247260.82 41 6030.752

Total 302941.91 42

Regression 81278.452 2 40639.226 7.334 .002
c

Residual 221663.46 40 5541.587

Total 302941.91 42

b. Predictors: (Constant), CBI

c. Predictors: (Constant), CBI, grass_biomass_%

a. Dependent Variable: Intensity_act_dry

ANOVAa

Model

1

2
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Standardized Coefficients

B Std. Error Beta

(Constant) -0.663 42.778 -0.015 0.988

CBI 1.400 0.461 0.429 3.039 0.004

(Constant) -128.783 72.355 -1.780 0.083

CBI 1.623 0.454 0.497 3.578 0.001

grass_biomass_% 129.776 60.383 0.299 2.149 0.038

1

2

a. Dependent Variable: Intensity_act_dry

Coefficientsa

Model

Unstandardized Coefficients

t Sig.

 

 

Collinearity 

Statistics

Tolerance

day_timing -.012
b -0.081 0.936 -0.013 1.000

Wind_speed (m/s) .011
b 0.078 0.938 0.012 1.000

grass_biomass_% .299
b 2.149 0.038 0.322 0.948

humidity -.016
b -0.092 0.927 -0.015 0.646

ambient_temp .247
b 1.710 0.095 0.261 0.914

Grass by Ht -.280
b -2.039 0.048 -0.307 0.978

An_Peren -.223
b -1.595 0.119 -0.244 0.979

day_timing .052
c 0.375 0.710 0.060 0.955

Wind_speed (m/s) -.017
c -0.125 0.901 -0.020 0.991

humidity -.067
c -0.390 0.699 -0.062 0.634

ambient_temp .240
c 1.742 0.089 0.269 0.913

Grass by Ht -.247
c -1.842 0.073 -0.283 0.962

An_Peren -.168
c -1.206 0.235 -0.190 0.933

1

2

a. Dependent Variable: Intensity_act_dry

b. Predictors in the Model: (Constant), CBI

c. Predictors in the Model: (Constant), CBI, grass_biomass_%

Excluded Variablesa

Model Beta In t Sig.

Partial 

Correlation
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Backward Regression 

 

Variables Entered

Variables 

Removed Method

1 An_Peren, ambient_temp, grass_biomass_%, 

day_timing, CBI, Wind_speed (m/s), Grass by Ht, 

humidity
b

Enter

2 humidity Backward (criterion: 

Probability of F-to-remove 

>= .100).

3 An_Peren Backward (criterion: 

Probability of F-to-remove 

>= .100).

4 day_timing Backward (criterion: 

Probability of F-to-remove 

>= .100).

5 Wind_speed 

(m/s)

Backward (criterion: 

Probability of F-to-remove 

>= .100).

Variables Entered/Removeda

Model

a. Dependent Variable: Intensity_act_dry

b. All requested variables entered.
 

 

R R Square Adjusted R Square Std. Error of the Estimate

1 .641
a 0.411 0.272 72.45

2 .641
b 0.411 0.293 71.42

3 .640
c 0.409 0.311 70.51

4 .638
d 0.407 0.327 69.66

5 .623
e 0.388 0.323 69.86

a. Predictors: (Constant), An_Peren, ambient_temp, grass_biomass_%, day_timing, CBI, 

Wind_speed (m/s), Grass by Ht, humidityb. Predictors: (Constant), An_Peren, ambient_temp, grass_biomass_%, day_timing, CBI, 

Wind_speed (m/s), Grass by Htc. Predictors: (Constant), ambient_temp, grass_biomass_%, day_timing, CBI, Wind_speed 

(m/s), Grass by Htd. Predictors: (Constant), ambient_temp, grass_biomass_%, CBI, Wind_speed (m/s), Grass 

by Hte. Predictors: (Constant), ambient_temp, grass_biomass_%, CBI, Grass by Ht

Model

Model Summary

 

 

 

 

 

 



 

56 

 

 

 

 

 

 

Sum of 

Squares df Mean Square F Sig.

Regression 124451.38 8 15556.422 2.963 .013
b

Residual 178490.53 34 5249.722

Total 302941.91 42

Regression 124391.26 7 17770.180 3.483 .006
c

Residual 178550.65 35 5101.447

Total 302941.91 42

Regression 123952.39 6 20658.732 4.155 .003
d

Residual 178989.52 36 4971.931

Total 302941.91 42

Regression 123400.07 5 24680.014 5.086 .001
e

Residual 179541.84 37 4852.482

Total 302941.91 42

Regression 117497.41 4 29374.353 6.019 .001
f

Residual 185444.50 38 4880.118

Total 302941.91 42

4

5

a. Dependent Variable: Intensity_act_dry

b. Predictors: (Constant), An_Peren, ambient_temp, grass_biomass_%, day_timing, CBI, 

Wind_speed (m/s), Grass by Ht, humidityc. Predictors: (Constant), An_Peren, ambient_temp, grass_biomass_%, day_timing, CBI, 

Wind_speed (m/s), Grass by Htd. Predictors: (Constant), ambient_temp, grass_biomass_%, day_timing, CBI, Wind_speed (m/s), 

Grass by Hte. Predictors: (Constant), ambient_temp, grass_biomass_%, CBI, Wind_speed (m/s), Grass by Ht

f. Predictors: (Constant), ambient_temp, grass_biomass_%, CBI, Grass by Ht

Model

1

2

3

ANOVAa

 

 

  



 

57 

 

Standardized 

Coefficients

B Std. Error Beta

(Constant) -341.632 226.765 -1.507 0.141

CBI 1.378 0.555 0.422 2.482 0.018

day_timing -4.960 13.881 -0.052 -0.357 0.723

Wind_speed (m/s) 22.168 21.105 0.163 1.050 0.301

grass_biomass_% 101.276 62.650 0.233 1.617 0.115

humidity 0.290 2.715 0.025 0.107 0.915

ambient_temp 8.204 4.453 0.382 1.843 0.074

Grass by Ht -12.554 7.369 -0.315 -1.704 0.098

An_Peren 8.432 27.394 0.063 0.308 0.760

(Constant) -322.373 135.995 -2.370 0.023

CBI 1.348 0.470 0.413 2.868 0.007

day_timing -4.705 13.479 -0.049 -0.349 0.729

Wind_speed (m/s) 22.066 20.784 0.163 1.062 0.296

grass_biomass_% 102.056 61.340 0.235 1.664 0.105

ambient_temp 7.929 3.582 0.370 2.213 0.033

Grass by Ht -12.563 7.264 -0.315 -1.729 0.093

An_Peren 7.258 24.746 0.054 0.293 0.771

(Constant) -311.578 129.247 -2.411 0.021

CBI 1.357 0.463 0.416 2.933 0.006

day_timing -4.424 13.274 -0.046 -0.333 0.741

Wind_speed (m/s) 21.987 20.516 0.162 1.072 0.291

grass_biomass_% 99.357 59.871 0.229 1.660 0.106

ambient_temp 7.791 3.506 0.363 2.222 0.033

Grass by Ht -11.112 5.253 -0.279 -2.115 0.041

(Constant) -319.730 125.378 -2.550 0.015

CBI 1.376 0.454 0.421 3.032 0.004

Wind_speed (m/s) 22.327 20.244 0.165 1.103 0.277

grass_biomass_% 104.002 57.523 0.239 1.808 0.079

ambient_temp 7.482 3.340 0.349 2.240 0.031

Grass by Ht -10.954 5.169 -0.275 -2.119 0.041

(Constant) -246.659 106.746 -2.311 0.026

CBI 1.471 0.447 0.451 3.293 0.002

grass_biomass_% 112.569 57.158 0.259 1.969 0.056

ambient_temp 5.557 2.856 0.259 1.946 0.059

Grass by Ht -10.520 5.168 -0.264 -2.036 0.049

2

3

4

5

a. Dependent Variable: Intensity_act_dry

1

Coefficientsa

Model

Unstandardized 

Coefficients

t Sig.
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Collinearity 

Statistics

Tolerance

2 humidity .025
b 0.107 0.915 0.018 0.321

humidity -.004
c -0.018 0.986 -0.003 0.382

An_Peren .054
c 0.293 0.771 0.050 0.499

humidity -.013
d -0.062 0.951 -0.010 0.388

An_Peren .049
d 0.273 0.787 0.045 0.501

day_timing -.046
d -0.333 0.741 -0.055 0.844

humidity -.022
e -0.107 0.915 -0.018 0.389

An_Peren .046
e 0.254 0.801 0.042 0.502

day_timing -.054
e -0.386 0.702 -0.063 0.846

Wind_speed (m/s) .165
e 1.103 0.277 0.178 0.719

e. Predictors in the Model: (Constant), ambient_temp, grass_biomass_%, CBI, Grass by Ht

Excluded Variablesa

Model Beta In t Sig.

Partial 

Correlation

3

4

5

a. Dependent Variable: Intensity_act_dry

b. Predictors in the Model: (Constant), An_Peren, ambient_temp, grass_biomass_%, day_timing, CBI, 

Wind_speed (m/s), Grass by Htc. Predictors in the Model: (Constant), ambient_temp, grass_biomass_%, day_timing, CBI, Wind_speed 

(m/s), Grass by Htd. Predictors in the Model: (Constant), ambient_temp, grass_biomass_%, CBI, Wind_speed (m/s), Grass 

by Ht
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