Breaking the Ground for Climate Change Solutions:

The Effect of Topographic and Anthropogenic Factors on Soil Carbon Sequestration on River Ridge Ranch, CA

> By Geoffrey Batterbee, Claire Manning, Moira Smith

Background

• Climate Change

- Increase in global temperature
- Intense storms, sudden shifts in weather patterns

Figure 1. Atmospheric carbon dioxide levels measured from Mauna Loa Observatory, Hawaii (*Climate.gov*).

Background

- Political Climate: difficult to decrease emissions
 - Domestic Partisan Divides
 - International Problems
- Short-term solution?

Figure 2. Climate protest in Washington, DC. (PanMacmillian.com).

Carbon Sequestration

Process of capturing and storing carbon dioxide from the atmosphere

• oceans, forests, grasslands, soil

Background

- Government incentives

 → market for carbon
 offsets
- Net-zero goals
- Growing market for carbon credit

Figure 3. Carbon market diagram (Audubon.org).

Project Introduction

- Determining the carbon sequestration capacity of soils given various factors
- Key factors under consideration:
 - Elevation
 - Aspect
 - Grazing
 - Irrigation

Figure 4. River Ridge Ranch, Springville, CA.

SOM and SOC

- SOM- Soil organic matter: the fraction of soil consisting of decomposing plant and animal biomass
- SOC- soil organic carbon: a measurable component of soil organic matter
- SOM = ~58% SOC

Figure 5. Soil organic matter.

Hypothesis/Questions

- Elevation: There will be a difference in SOM and SOC with elevation
- Aspect: SOM and SOC will be higher on northwest and west-facing slopes than on southwest and south-facing slopes
- Grazing: SOM and SOC measurements will be higher in ungrazed areas than in grazed
- Irrigation: SOM and SOC will be higher in irrigated areas than nonirrigated areas

Key Objectives

1. Understand the **potential differences** in **soil organic carbon** (SOC)

1. Offer **recommendations** for **improving land management** and **conservation** techniques

1. Baseline data for future studies

Methods: Site Selection

- 4 sites to compare elevation and aspect:
 - Southwest low
 - Northwest low
 - South high
 - West high
- 3 sites to compare grazing and irrigation:
 - Irrigated, grazed
 - Non-irrigated, grazed
 - Non-irrigated, non-grazed

Methods: Data Collection

- Data collection at 7 different sites within River Ridge Ranch and immediate surroundings (June 2022)
- Within each site, 10 sample plots were taken at equal intervals along a transect

Methods: Data Collection

- Soil corer was used to take samples at two depths
 - Top layer (0-10 cm)
 - Bottom layer (10-40 cm)

Methods: Data Analysis

- Sieved, oven dried, and weighed samples
- Samples placed in the oven at 500°C for four hours to burn the organic matter off
- Samples were weighed again
- Amount of organic matter determined from the difference of weights

$$\% SOM = \frac{initial weight - final weight}{initial weight}$$

%SOM on River Ridge Study Sites

IG	=	Irrigated Grazed
NG	=	Non-irrigated Grazed
NN	=	Non-irrigated Non-Grazed
SWL	=	Southwest Lower
NWL	=	Northwest Lower
SH	=	South High
wн	=	West High

%SOM on River Ridge Study Sites

IG	=	Irrigated Grazed
NG	=	Non-irrigated Grazed
NN	=	Non-irrigated Non-Grazed
SWL	=	Southwest Lower
NWL	=	Northwest Lower
SH	=	South High
WH	=	West High

%SOM in Top and Bottom Soil Layers

IG	=	Irrigated Grazed
NG	=	Non-irrigated Grazed
NN	=	Non-irrigated Non-Grazed
SWL	=	Southwest Lower
NWL	=	Northwest Lower
SH	=	South High
WH	=	West High

Impact of Irrigation on %SOM

%SOM on River Ridge Study Sites

IG	=	Irrigated Grazed
NG	=	Non-irrigated Grazed
NN	=	Non-irrigated Non-Grazed
SWL	=	Southwest Lower
NWL	=	Northwest Lower
SH	=	South High
WH	=	West High

Impact of Grazing on %SOM

%SOM in Top and Bottom Soil Layers

IG	=	Irrigated Grazed
NG	=	Non-irrigated Grazed
NN	=	Non-irrigated Non-Grazed
SWL	=	Southwest Lower
NWL	=	Northwest Lower
SH	=	South High
WH	=	West High

Implications

- Ranching practices
 - Irrigation
 - Grazing

Figure 6. Irrigated land in California. (Landflip.com).

Figure 7. Grazed land in Nevada. (FarmandRanch.com).

Implications

• Conservation

- Elevation
- No development

Figure 8. Neighborhood development in LA. (dreamstime.com).

Figure 9. View from the top of River Ridge Ranch, CA.

Carbon Market Implications

Carbon Offsets

Figure 10. Carbon offset schematic.

Future Research

- Long-term experiment exploring irrigation and grazing
- Does slope angle affect the amount of SOC?
- Baseline for Future Research
 - How does carbon sequestration in the pasture change with the reintroduction of cattle grazing on the ranch?
 - How can we more accurately estimate the total amount of soil carbon on River Ridge Ranch?

Acknowledgements

- Thank you to Professors Paul Laris, Scott Winslow, Mystyn Mills and the rest of the CSULB Geography Department faculty for guiding us in this project
- Thanks to Gary Adest for his guidance, hospitality, and for offering his ranch as a research site
- To the National Science Foundation for funding the research
- Grad Students Sara Avrit, Mina Nada, and Brendan Schultheis for helping with the project

