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Abstract. In this paper, we study the behavior of the Laplacian on a sequence of
manifolds {Mn

i } with a lower bound in Ricci curvature that converges to a metric-
measure space M∞. We prove that the heat kernels and Green’s functions on
Mn

i will converge to some integral kernels on M∞ which can be interpreted, in
different cases, as the heat kernel and Green’s function on M∞. We also study the
Laplacian on noncollapsed metric cones; these provide a unified treatment of the
asymptotic behavior of heat kernels and Green’s functions on noncompact manifolds
with nonnegative Ricci curvature and Euclidean volume growth. In particular, we
get a unified proof of the asymptotic formulae of Colding-Minicozzi, Li and Li-Tam-
Wang.

Introduction

Assume Mn is an n dimensional Riemannian manifold with a lower bound in Ricci
curvature,

(0.1) RicMn ≥ −(n− 1)Λ,

where Λ ≥ 0. By the Bishop-Gromov inequality, we have a uniform volume doubling
condition,

(0.2) Vol(B2R(p)) ≤ 2κ Vol(BR(p)),

here we can take κ = n if Λ = 0; if Λ > 0, we require that R is bounded from above,
say, R < D for some D > 0. Moreover, there is a uniform Poincare inequality

(0.3)
1

Vol(BR(p))

∫
BR(p)

|f − fp,R| ≤ τR(
1

Vol(BR(p))

∫
BR(p)

|df |2)
1
2 ,

where fp,R is the average of f on BR(p); see [Bu], [Ch3], [HaKo] and the references
therein.

We assume, throughout this paper, {Mn
i } is a sequence of complete Riemannian

manifolds with (0.1) that converges in the pointed measured Gromov-Hausdorff sense,

to a metric space M∞; we write Mn
i

dGH−→M∞, dGH is the Gromov-Hausdorff distance.
In particular, (0.2) holds on M∞. One can show that (0.3) and the segment inequality,
which is stronger than (0.3), hold on M∞ as well; note on M∞, the role of |du| in
(0.3) is played by gf , the minimal generalized upper gradient, see [Ch3], [ChCo4].

In Cheeger’s paper [Ch3], a significant portion of analysis on smooth manifolds was
extended to metric-measure spaces satisfying (0.2), (0.3). In [Ch3], [ChCo4] Cheeger
and Colding defined a self-adjoint Laplacian operator ∆ on M∞. By convention ∆
is positive. They proved that the eigenvalues and eigenfunctions of the Laplacian ∆i

over Mn
i converge to those on M∞, thereby establishing Fukaya’s conjecture [Fu]. So
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if we consider RIC, the completion under measured Gromov-Hausdorff convergence
of the set of smooth manifolds with (0.1), it is natural to expect that quantities
associated to ∆ should behave continuously.

In this paper, we will study this phenomenon in detail. Our main goal is to prove,
in various cases, that the heat kernel Hi and Green’s function Gi on Mn

i converge
uniformly to the heat kernel H∞ and Green’s function G∞ on M∞. We will make
precise the definition of these convergences in Section 1. For results concerning heat
kernels, a lower bound in Ricci curvature (0.1) is enough; for Green’s functions, we
require that RicMn

i
≥ 0; compare with (1.16), (1.18), (1.19).

Moreover, in the noncompact case, we also study the asymptotics of the heat kernel
and Green’s function on a manifold Mn with RicMn ≥ 0 and a Euclidean volume
growth condition:

(0.4) Vol(BR(p)) > v0R
n.

According to [ChCo1], any tangent cone at infinity of a manifold Mn with RicMn ≥
0 and (0.4) is a metric cone C(X). So viewed from a sufficiently large scale, Mn

appears to be close to some C(X). Combined with the appropriate convergence
theorems mentioned above, at a sufficiently large scale the heat kernel and Green’s
function on Mn are close to those on C(X).

On the other hand, we show that the classical analysis on cones, [Ch1], [Ch2],
[ChTa1], can be generalized to C(X). In particular, we have explicit expression of
heat kernels and Green’s functions on C(X); see (6.21), (4.23). In this way we get
a unified treatment for the asymptotic formulae of these integral kernels on Mn. In
particular, we get new proofs of the Colding-Minicozzi asymptotic formula for Green’s
functions, [CoMi1] (compare with [LiTW]), the asymptotic formulae for heat kernels
of Li [Li1] and Li-Tam-Wang [LiTW].

The organization of this paper is as follows:
Section 1 reviews some background material that we need in the sequel.
In Section 2, in the compact case we prove, Hi(·, ·, t) → H∞(·, ·, t) uniformly (as-

suming (0.1)), and Gi → G∞ uniformly, off the diagonal (assuming RicMn ≥ 0). It’s
well known that there is an eigenfunction expansion for heat kernels, so our results
follows easily from the work of Cheeger-Colding [ChCo4], [Ch3], by estimating the
remainders of the eigenvalue expansions. We remark, previously in [KK1], [KK2] it
was proved that a subsequence of Hi converges to some kernel on the compact metric
space M∞.

By the Dirichlet’s principle and the transplantation theorem of Cheeger [Ch3],
we show in Section 3 that the uniform limit of solutions for Poisson equations is a
solution for a Poisson equation, see also [Ch3], [ChCo4]. In particular, if {Mn

i } are
noncompact, RicMn

i
≥ 0, satisfy (0.4) uniformly, then Gi → G∞ uniformly off the

diagonal (Theorem 3.21).
We treat the heat kernels on noncompact spaces in Section 5. We assume (0.1).

First, some subsequence of the Dirichlet heat kernels HR,i on BR(pi) ⊂ Mn
i will

converge to some function HR,∞ on BR(p∞) ⊂ M∞. However, at present it is not
clear if HR,i will converge. On the other hand by a generalized maximum principle,
any two HR,∞ (from two different subsequences) can not be too different from each
other, see (5.46). Letting R→∞, we prove that Hi(·, ·, t)→ H∞(·, ·, t) in L1.
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In Theorem 5.59, when the noncollapsed limit M∞ is a manifold, we prove H∞ is the
heat kernel over M∞, i.e. the integral kernel of the semigroup e−t∆. For general M∞,
the picture is not yet clear; however, it is true when M∞ = C(X) is a noncollapsed
tangent cone that is the limit of a sequence of manifolds with nonnegative Ricci
curvature, see Theorem 6.1.

In Section 4 and Section 6 we study the Laplacian on C(X). We prove that in this
case, one can still separate variables. We use these to study the structure of G∞ and
H∞ on C(X), and the asymptotic behavior of Green’s function and heat kernel on a
manifold Mn with RicMn ≥ 0 and (0.4).

In Section 7 we study the asymptotic behavior of the eigenvalues λj,∞ on a compact
metric space M∞ which is the limit of a sequence of manifolds {Mn

i } with (0.1). We
will prove in the noncollapsed case, the Weyl asymptotic formula is true on M∞;
see Theorem 7.3. In the collapsed case, we get some link between the behavior of
eigenvalues and dimMink(M∞), the Minkowski dimension of M∞.

All of the estimates in this paper are uniform, i.e. the constants are valid for the
whole family of manifolds we are considering (for example all compact manifolds Mn

with RicMn ≥ −(n− 1)Λ and DiamMn ≤ D).
Acknowledgments. I’m most grateful to my thesis advisor, Prof. Jeff Cheeger,

for his encouragement and many valuable suggestions in connection with this work.
Thanks also to Fengbo Hang for helpful conversations. I wish to thank the referees for
pointing out the papers [LiTW] related to Theorem 6.30, and [KK1], [KK2] related
to the compact case.

1. Background and notation

Suppose (Mn
i ,Voli)

dGH−→ (M∞, µ∞) in the measured Gromov-Hausdorff sense, i.e.
the sequence {Mn

i } converges in the Gromov-Hausdorff sense to M∞, and for any
xi → x∞, (xi ∈ Mn

i ) and R > 0, we have Voli(BR(xi)) → µ∞(BR(x∞)); here µ∞ is
Borel regular. In fact, for any sequences of manifolds with Ricci curvature bounded
from below, after possible renormalization of the measures when {Mn

i } is collapsing,
one can alway find a subsequence converges in the measured Gromov-Hausdorff sense,
see [ChCo2]. In the following we usually let Vol denote the (renormalized if {Mn

i }
is collapsing) measure on Mn

i , i = 1, 2, ...,∞; on M∞ sometimes we also write µ∞
for Vol∞. We refer to [Ch3], [ChCo2], [Gr] for general background on measured
Gromov-Hausdorff convergence.

Definition 1.1. Suppose Ki ⊂ Mn
i

dGH−→ K∞ ⊂ M∞ in the measured Gromov-
Hausdorff sense. fi is a function on Mn

i , i = 1, 2, ... ; f∞ is a continuous function
on M∞. Assume Φi : K∞ → Ki are εi-Gromov-Hausdorff approximations, εi → 0. If

fi ◦ Φi converge to f∞ uniformly, we say that fi → f∞ uniformly over Ki
dGH−→ K∞.

For simplicity, in the above context, we also say that fi → f∞ uniformly on K; when
we write fi(x) → f∞(x), we mean that fi → f∞ uniformly and fi(xi) → f∞(x∞),
where xi → x∞, xi ∈Mi.

In many applications, the family {fi} is actually equicontinuous. We remark, the
Arzela-Ascoli theorem can be generalized to the case where the functions live on

different spaces: when Mn
i

dGH−→ M∞, for any bounded, equicontinuous sequence {fi}
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(fi is a function on Mn
i ), there is a subsequence that converges uniformly to some

continuous function f∞ on M∞. The proof is straightforward.
We also introduce the notion of Lp convergence (1 ≤ p ≤ ∞).

Definition 1.2. We say fi → f∞ in Lp, if for all ε > 0, one can write fi = φi + ηi
such that φi → φ∞ uniformly and lim supi→∞ ‖ηi‖Lp ≤ ε, ‖η∞‖Lp ≤ ε.

The following is a generalization of the Rellich-Kondrakov theorem:

Lemma 1.3 (Rellich). Assume B1(pi) ⊂ Mn
i

dGH−→ B1(p) ⊂ M∞ in the measured
Gromov-Hausdorff sense. ui is a function on Mn

i , i = 1, 2, ... . Assume

(1.4)

∫
B1(pi)

(ui)
2 + |∇ui|2 ≤ N.

Then there is a subsequence of {ui} that converges in L2 over any compact subset of
the open balls B1.

The proof depends only on a weak Poincare inequality (use a bigger ball on the right
of (0.3)) and (0.2). One can divide the ball BR(p) (R < 1) into small subsets and
approximate f by functions that are constant over each of these small subsets, then
one easily finds a convergent subsequence by standard diagonal arguments. Compare
[Ch3], especially [CoMi3].

We use subscript i and write fi, HR,i, pi, etc. to denote functions, points, etc on Mn
i .

To simplify notation, when we write an equation with some function or other objects
with no subscription (for example, f), it should be understood that the equation is
valid for some suitable convergent sequence of functions or other objects (for example,
{fi}; fi is defined on Mn

i , i = 1, 2, ...), according to the context.
In [Ch3], Cheeger defined a Sobolev space H1,2 on metric-measure spaces (Z, µ)

satisfying (0.2), (0.3), and proved that Lipschitz functions are dense in H1,2. Denote

by
◦
H1,2(Ω) the closure in H1,2 of Lipschitz functions supported in an open set Ω.

Recall in [Ch3], one has a natural finite dimensional cotangent bundle T ∗Z. We use
du to denote the differential of u, see Section 4 of [Ch3]. One can put a norm | · | on
T ∗Z by assigning |df | = gf = Lip f for f Lipschitz. Here as in [Ch3],

(1.5) Lip f(x) = lim sup
y→x

|f(y)− f(x)|
d(y, x)

.

Note we use Lipf to denote the Lipschitz constant of f . Clearly, on smooth manifold
| · | agrees with the standard norm |du| = |∇u|. It was proved in [Ch3] that | · | is
equivalent to a uniformly convex norm, in particular, an inner product.

If we have the stronger assumption Z = M∞ with Mn
i

dGH−→M∞, in [ChCo4] Cheeger
and Colding proved thatM∞ is µ∞-rectifiable, and, as a corollary, the norm |·| actually
comes from an inner product < ·, · >. So H1,2 is made into a Hilbert space:

(1.6) < u, v >H1,2=

∫
M∞

uv +

∫
M∞

< du, dv >,

and for Lipschitz functions f , one has

(1.7) ‖f‖2
H1,2

= ‖f‖2
L2 +

∫
M∞

|Lip f |2.
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Now by the standard theory of Dirichlet forms, one gets a positive self-adjoint
Laplacian ∆ on M∞, see [Ch3], [ChCo4] for the details of this theory.

Recall one form of the transplantation theorem of Cheeger (for a proof, see Lemma
10.7 of [Ch3]):

Lemma 1.8. Assume Mn
i

dGH−→ M∞. f∞ is a Lipschitz function on BR(x∞) ⊂ M∞,
xi → x∞. Then there is a sequence of Lipschitz functions {fi} that converges uni-
formly to f∞, here fi is defined on BR(xi) ⊂Mn

i . Moreover, one can require that

(1.9) lim sup
i→∞

Lipfi ≤ Lipf∞,

(1.10) lim sup
i→∞

‖Lip fi‖L2 ≤ ‖Lip f∞‖L2 .

By [J], [HaKo], on length spaces satisfying (0.2), a weak Poincare inequality implies
a uniform Poincare-Sobolev inequality (i.e, put Lχp norm on the left side of (0.3)
for some χ > 1). In particular, we have a Dirichlet-Sobolev inequality for u ∈
◦
H1,2(BR(p)). So we have

Lemma 1.11 (Moser iteration). If for all φ with compact support in B2(p),

(1.12)

∫
∇u∇φ =

∫
cuφ+ fφ,

then for q > C(κ), we have,

(1.13) ‖u‖L∞(B1(p)) ≤ C(n, q)(1 + |c|)N(τ,κ)(‖u‖L2(B2(p)) + ‖f‖Lq(B2(p))).

For proof, see chapter 4 of [Lin]. Note here we need to renormalize the measure.
Recall, on smooth manifolds we have

Lemma 1.14 (Gradient estimate). If ∆u− cu = f , ‖u‖L2 <∞ on B2R(p) and f is
a C2 function with Lipschitz constant Lipf , c is a constant, then on BR(p) we have
a gradient estimate:

(1.15) |∇u| ≤ C(‖f‖L∞ , ‖u‖L2 ,Lipf)(1 + |c|)N(τ,κ).

The proof follows a standard argument of Cheng-Yau, see [CY1], [LiY1], compare
also with [Lin], [Li2], [SY]. Then use the Moser iteration to replace ‖u‖L∞ with ‖u‖L2 .

Finally recall the Li-Yau estimates [LiY2], [SY]: If Mn satisfies (0.1), then its heat
kernel H satisfies

(1.16) H(x, y, t) ≤ C(n) Vol(B√t(x))−1/2 Vol(B√t(y))−1/2e−d
2(x,y)/5teCΛt.

If t < T , by volume comparison (1.16) simplifies to

(1.17) H(x, y, t) ≤ C(n,Λ, T ) Vol(B√t(x))−1e−d
2(x,y)/5teCΛtt−C(n)eC(n,Λ,T )d(x,y).

If we assume RicMn ≥ 0, then

(1.18)
C−1(n)

Vol(B√t(x))
e−d

2(x,y)/3t ≤ H(x, y, t) ≤ C(n)

Vol(B√t(x))
e−d

2(x,y)/5t.
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Assume Mn is noncompact, write G for the minimal positive Green’s function on
Mn. If n ≥ 3, Mn satisfies (0.4) and RicMn ≥ 0, then G exists ([LiY2], [LiT1], [LiT2],
[SY]) and satisfies

(1.19) C−1(v0)d(x, y)2−n ≤ G(x, y) ≤ C(v0)d(x, y)2−n.

For proofs of the above estimates, see [LiY2], [SY].

2. The compact case

In this section, we assume M∞ is compact. First we study the heat kernel H.
It’s well known that if RicMn

i
≥ −(n − 1)Λ, there is a lower bound for the kth

eigenvalue λk,i of the Laplacian ∆i over Mn
i :

(2.1) λk,i ≥ C(n,Λ, D)k
2
n ,

here DiamMn
i ≤ D. The proof uses only (0.2) and (0.3); see [Gr] and Theorem 4.8

of [Ch3]. Hence over Mn
i we have

(2.2) Hi(x, y, t) =
∞∑
j=0

e−λj,itφj,i(x)φj,i(y),

here φj,i is the eigenfunction of the jth eigenvalue λj,i. By the Cheeger-Colding
spectral convergence theorem [ChCo4], for each j, λj,i → λj,∞, and φj,i → φj,∞
uniformly when i→∞, here λj,∞ and φj,∞ are the j-th eigenvalue and (renormalized)
eigenfunction of ∆ on M∞. So (2.1) is also true for λj,∞. Moreover,

(2.3) ‖φj,i‖L∞ ≤ C1(n,Λ, D)(1 + λj,i)
C(n)‖φj,i‖L2 ,

(2.4) ‖∇φj,i‖L∞ ≤ C0(n,Λ, D)(1 + λj,i)
C(n)‖φj,i‖L∞ .

These are implied by (the proof of) the Moser iteration and the gradient estimate,
see [LiY1]. By [ChCo4], (2.3), (2.4) can pass to M∞ (on M∞ (2.4) becomes an
estimate for Lipφj,∞). So it makes sense to write

(2.5) H∞(x, y, t) =
∞∑
j=0

e−λj,∞tφj,∞(x)φj,∞(y).

By (2.1), H∞ is the heat kernel over M∞.
Apply (2.3), (2.4) to

∑∞
j=k e

−λj,itφj,i(x)φj,i(y), the tail of (2.2), one easily get

Theorem 2.6. Assume Mn
i

dGH−→ M∞, RicMn
i
≥ −(n − 1)Λ. When t > 0 fixed, Hi

converges to the heat kernel H∞ over M∞ uniformly. H∞ is continuous in t, x, y;
when t fixed, it is Lipschitz in x, y.

Corollary 2.7. For H∞ on M∞, the Li-Yau estimate (1.18) is true if RicMn
i
≥ 0; if

RicMn
i
≥ −(n− 1)Λ then (1.16) is true.

Next we study the Green’s functions. Assume RicMn
i
≥ 0. Recall,

(2.8) Gi(x, y) =

∫ ∞
0

hi(x, y, t)dt,
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here hi(x, y, t) = Hi(x, y, t)−φ0,i(x)φ0,i(y) = Hi(x, y, t)− 1. Note, since the sequence
{Mn

i } might collapse, we have to renormalize the measures and eigenvalues such that
Vol(Mn

i ) = 1 and {φj,i}j is orthonormal, e.g. λ0,i = 0, φ0,i = 1. So

(2.9) Gi(x, y) =

∫ ε

0

hi(x, y, t)dt+
∞∑
j=1

e−ελj,i/2
∫ ∞
ε
2

e−λj,itφj,i(x)φj,i(y)dt.

When x is fixed, by (2.3),

(2.10)
∞∑
j=k

‖e−ελj,i/2
∫ ∞
ε
2

e−λj,itφj,i(x)φj,i(y)dt‖L∞ ≤
∞∑
j=k

e−ελj,i

λj,i
C1(1 + λj,i)

C3 .

This goes to 0 uniformly in i as k →∞, by (2.1). On the other hand, clearly (1.18)
holds after renormalization; when Ric ≥ 0, R < 1/8 we have the (rescaled) volume
bound

(2.11) C(n,D)Rn ≤ Vol(BR(x)) ≤
√
RC(n) Vol(B√R(x)) ≤ C ′(n)R.

So when d(x, y) ≥ δ > 0, by (1.18),

(2.12)

∫ ε

0

|hi(x, y, t)|dt ≤ ε+

∫ ε

0

|Hi(x, y, t)|dt ≤ ε+ C

∫ ε

0

t−
n
2 e−

δ2

5t dt.

So in particular, by choosing ε small, we get a function G∞(x, y) on M∞, such that
Gi → G∞ in L∞ on compact subsets, off the diagonal.

Finally, we want to check G∞ is the Green’s function over M∞. We now establish
an L1 bound for G(x, y) over the ball BR(x). Note

(2.13)

∫
BR(x)

|G(x, y)|dy ≤
∫
BR(x)

∫ 1

0

|h(x, y, t)|dtdy +

∫
BR(x)

∫ ∞
1

|h(x, y, t)|dtdy.

Since ‖φ(y)‖L2 = 1, by (2.1), (2.3), (2.11) and the Schwartz inequality,

(2.14)

∫
BR(x)

∫ ∞
1

|h(x, y, t)|dtdy ≤
∞∑
j=1

∫
BR(x)

e−λj/2|φj(x)|
∫ ∞

1
2

e−λjt|φj(y)|dtdy

≤ C(n)
∞∑
j=1

e−λj/2(1 + λj)
C2(n)
√
R

∫ ∞
1
2

e−λjtdt ≤ C ′(n)
√
R.

Now we focus on the first term on the right hand side of (2.13). Since H − h = 1,
and we have (2.11), it’s enough to estimate the integral of H. Put R < 1/8, by (1.18),
(2.11) we have

(2.15)

∫ 1

0

∫
BR(x)

H(x, y, t)dtdy ≤
∫ 1

0

∫
BR(x)

C(n) Vol−1(B√t(x))e−
d(x,y)2

5t dtdy

≤ (

∫ R

0

∫
BR(x)

C(n) Vol−1(B√t(x))e−
d(x,y)2

5t dtdy) + C ′(n)
√
R.

Next,

(2.16)

∫ R

0

∫
BR(x)

e−d(x,y)2/5tdy

Vol(B√t(x))
dt =

∫ R

0

∫ R
0
e−r

2/5tA(r)rn−1dr∫ √t
0
A(r)rn−1dr

dt,
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here A(r)rn−1 is the surface area element of ∂Br(x). Since RicMn
i
≥ 0, A(r) is non-

increasing. The right hand side of (2.16) can be bounded by

(2.17)

∫ R

0

(

[R/
√
t]+1∑

s=0

∫ (s+1)
√
t

s
√
t

e−r
2/5tA(r)rn−1dr/

∫ √t
0

A(r)rn−1dr)dt

≤ C1(n)R +

∫ R

0

[R/
√
t]+1∑

s=1

e−s
2/5((s+ 1)n − sn)dt ≤ C ′(n)R.

So combine (2.14), (2.15) and (2.11) we get

(2.18)

∫
BR(x)

|G(x, y)|dy ≤ C ′(n)
√
R.

Since Gi → G∞ uniformly off the diagonal, use the Cheeger-Colding theorem on the
convergence of eigenfunctions [ChCo4] and (2.3), (2.4), we get, for all x,

(2.19)

φj,∞(x) = lim
i→∞

φj,i(x) = lim
i→∞

∫
Mi

Gi(x, y)λj,iφj,i(y)dy

=

∫
M∞

G∞(x, y)λj,∞φj,∞(y)dy.

So G∞ is the Green’s function over M∞. Moreover, by (2.10), (2.12) and Lemma
1.14, G∞ is Lipschitz continuous off the diagonal. It is harmonic off the diagonal by
Lemma 3.17. So we have proved

Theorem 2.20. Assume Mn
i

dGH−→ M∞, RicMn
i
≥ 0. Then the Green’s function G∞

on M∞ exists. On any compact subsets K off the diagonal, G∞ is Lipschitz and
harmonic, Gi → G∞ uniformly on K.

3. The Green’s functions on noncompact spaces

Recall how on a manifold, one solves the the Poisson equation,

(3.1) ∆uR = f, uR|∂BR(p) = h,

for Lipschitz functions f, h on the closed ball BR(p). By the Dirichlet’s principle, uR
is the unique minimizer of the functional

(3.2) I(u) =

∫
BR(p)

(|du|2 − fu).

within the space E = h+
◦
H1,2(BR(p)), note ∆ is positive by convention.

AssumeMn
i

dGH−→M∞ in the measured Gromov-Hausdorff sense, RicMn
i
≥ −(n−1)Λ.

Recall, by [Ch3], [ChCo4], ∆ is linear on M∞. So the above variational method is
valid also on M∞.

Lemma 3.3 (Lower semicontinuity of energy). Suppose ui, fi are C2 functions over
Mn

i , ∆ui = fi, ui → u∞, fi → f∞ uniformly over the sequence of converging balls
B2R(pi)→ B2R(p∞), and there is a uniform gradient estimate for ui and fi:

(3.4) |∇ui|, |∇fi| < L.
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Then we have

(3.5) I(u∞) ≤ lim inf
i→∞

I(ui).

Proof. As in [ChCo1], we can get an integral bound for the Hessian of fi on the ball
B1(pi): recall the Bochner formula

(3.6)
1

2
∆(|∇fi|2) = |Hessfi |2+ < ∇∆fi,∇fi > + Ric(∇fi,∇fi).

Multiply by a cut-off function φ with suppφ ⊂ Br ⊂ B1(qi), φ|Br/2 = 1, |∇φ| ≤ c(n, r),

|∆φ| ≤ c(n, r); see Theorem 6.33 of [ChCo1]. Since fi is harmonic,

(3.7)
1

2
φ∆(|∇fi|2) = φ|Hessfi |2 + φRic(∇fi,∇fi).

Integrate by parts,

(3.8)

∫
Br

1

2
(|∇fi|2)∆φ =

∫
Br

φ|Hessfi |2 +

∫
Br

φRic(∇fi,∇fi).

By assumption, there is a definite lower bound for the last term in (3.8). Note |∆φ| is
uniformly bounded by construction, we have a uniform upper bound for

∫
Br
φ|Hessfi |2.

So by Lemma 1.3 we can assume some subsequence of |∇fi| converges to a function
Γ on BR(p∞) ⊂ M∞ in L2. Assume, x ∈ Rk ⊂ M∞ for some k (all tangent cone at
x is Rk), there is some subset A(x) ⊂ M∞ such that and Γ is continuous on A(x),
x ∈ A(x) is a density point of A(x). By Luzin’s theorem and the results in [ChCo2],
these properties hold for almost all x ∈M∞. For such x, we prove

(3.9) |Lip f∞(x)| ≤ Γ(x).

Clearly, (3.9) implies our lemma.
To prove (3.9), it’s enough to prove, for all ψ > 0, if l = d(x, y) is sufficiently small,

then

(3.10) |f∞(x)− f∞(y)| ≤ d(y, x)(Γ(x) + 6ψ).

By the gradient estimate of fi (so of f∞), if (3.10) is not true for some y0, then for
all y ∈ Blψ/L(y0),

(3.11) |f∞(x)− f∞(y)| > d(y, x)(Γ(x) + 5ψ).

Pick xi, y0,i ∈ Mn
i , xi → x, y0,i → y0, d(xi, y0,i) = l. Then for i big enough, for all

yi ∈ Blψ/L(y0,i) and all minimal geodesic γi connecting xi and yi,

(3.12)

∫
γi

|∇fi| ≥ d(xi, yi)(Γ(x) + 4ψ).

First of all, since |∇fi| is uniformly bounded by L, a simple computation shows along
every γi we must have

(3.13) |∇fi| > Γ(x) + 2ψ,

on a subset of γi which has 1-Hausdorff measure at least 2ψl/(L− Γ(x)). Put

(3.14)
Ti = {v ∈ Txi |v = γ′(0) for some minimal geodesic γ

from xi to yi ∈ Blψ/L(y0,i)}.
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We must have

(3.15) Hn−1(Ti) > C(n, L, ψ)Hn−1(∂B1(0)),

where Hn−1 is the (n − 1)-Hausdorff measure over the unit sphere ∂B1(0) in the
tangent space Txi . Combine this with (3.13), when M∞ is noncollapsed, if l is small
enough, by the proof of the Bishop-Gromov inequality, for sufficiently big i,

(3.16)
Vol ({zi ∈ Bl(xi)||∇fi(zi)| > Γ(x) + 2ψ})

Vol (Bl(xi))
≥ C(x, n, L, ψ) > 0.

Now |∇fi| converge to Γ in L2, so (3.16) is also true if we substitute |∇fi| in (3.16)
by Γ, xi by x. We get a contradiction to the choice of x.

The proof is the same when M∞ is collapsed. We just use the segment inequality
([ChCo1], [ChCo4]) to get (3.16) from (3.11), (3.12) and (3.13). �

Lemma 3.17. Let u∞, f∞ be as in the previous lemma. Then

(3.18) ∆u∞ = f∞.

Proof. Assume this is not true over a ball Bλ(p
∗) ⊂⊂ B1(0). By solving the Dirichlet

problem on Bλ(p
∗) we can find v∞ with the same boundary value as u∞ over ∂Bλ,

but with smaller energy, say

(3.19) I(v∞) =

∫
Bλ(p∗)

|dv∞|2 − f∞v∞ <

∫
Bλ(p∗)

|du∞|2 − f∞u∞ − 2Ψ.

By obvious density properties, we can change v∞ slightly so that v∞ agrees with u∞
on a neighborhood of ∂Bλ(p

∗). By Lemma 3.3, for i big enough,

(3.20) I(v∞) ≤ I(ui)−Ψ.

So by (the proof of) Lemma 1.8 (see Section 10 of [Ch3]), for i big enough we can
find a function vi with the same boundary value on ∂Bi as ui but with smaller energy
I. That contradicts the fact that ∆ui = fi. In view of (3.2) and Lemma 1.8. �

The solution of (3.1) is unique on M∞ because the maximum principle holds, see
Section 7 of [Ch3].

We now study the Green’s functions. Assume (Mn
i , pi,Voli)

dGH−→ (M∞, p, µ∞) in the
pointed measured Gromov-Hausdorff sense ([Gr], [ChCo2]), where RicMn

i
≥ 0, Mn

i is
complete, noncompact, n ≥ 3.

Theorem 3.21. Assume, Mn
i also satisfies Vol(BR(pi)) > v0R

n. Then on M∞ there
is a Green’s function G∞, Gi → G∞ uniformly on any compact subsets of M ×M
that does not intersects with the diagonal.

Proof. Since n ≥ 3, the Euclidean volume growth condition (0.4) implies that the
minimal positive Green’s function Gi exists on Mn

i (∆ is positive). Moreover, Gi

satisfies the Li-Yau estimate (1.19). So by the Cheng-Yau gradient estimate and the
Arzela-Ascoli theorem, for any fixed x, for some subsequence (still denoted by Gi),
we have

(3.22) Gi(x, y)→ G∞(x, y),
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uniformly over any compact set in M \ {x}. Clearly, G∞ satisfies (1.19). We will
show G∞ is in fact well defined, and Gi → G∞ as stated in the above theorem.

Assume f∞ is any Lipschitz function supported in BK(p∞) ⊂M∞, Lipf∞ ≤ L. By
Lemma 1.8 and approximation, there is a sequence of C2 functions {fi} with fi → f∞
uniformly, Lipfi ≤ 2L, suppfi ⊂ B2K(pi) ⊂Mn

i , i = 1, 2, ...,∞.
Recall on each manifold Mn

i with maximal volume growth condition, the function,

(3.23) ui(x) =

∫
Mn
i

Gi(x, y)fi(y)dy,

solves the Poisson equation

(3.24) ∆ui = fi , lim
x→∞

ui(x) = 0.

Now by the Li-Yau estimate (1.19) and the Euclidean volume growth condition
(0.4), Gi is locally integrable, so ui is uniformly bounded. The gradient estimate
Lemma 1.14 shows that ui are uniformly Lipschitz:

(3.25) Lipui ≤ C(L,K, n).

So we can find a subsequence of {ui} that converges to some Lipschitz function u∞
on M∞. Note that by the Li-Yau estimate, (1.19),

(3.26) |ui(x)| ≤ C ′(L,K, n)d(x, pi)
2−n, (i = 1, 2, ...,∞).

So by Lemma 3.17, ∆u∞ = f∞ on M∞. Using the fact Laplacian is linear, by (3.26)
and the maximum principle (Section 7 of [Ch3]), it is clear that u∞ is well defined
and ui → u∞ uniformly.

Notice, by (1.19),

(3.27) u∞(x) =

∫
M∞

G∞(x, y)f∞(y)dy.

Since we can choose arbitrary K, f∞, clearly G∞ is also well defined, Gi → G∞
uniformly, off the diagonal. By (3.27) and Lemma 3.17, G∞ can be interpreted as the
minimal positive Green’s function on M∞. �

4. Separation of variables on tangent cones

Assume Mn
i is complete noncompact, RicMn

i
≥ 0 and satisfies (0.4) uniformly,

Mn
i

dGH−→M∞. Recall that by [ChCo1], [ChCo2], every tangent cone of M∞ is a metric
cone. We denote such a cone by C(X) = R+×rX, here (X, dx2) is a compact length
space with DiamX ≤ π, [ChCo1]. The metric on C(X) is

(4.1) dρ2 = dr2 + r2dx2.

Here we write r for the distance from the pole p∞ = (0, X).
The measure µ∞ on C(X) is just the n-Hausdorff measure, [ChCo2]. Since we can

rescale C(X), µ∞ induced a natural measure µX on X that obviously satisfies a dou-
bling condition (0.2) (with some different κ). Moreover, X satisfies the rectifiability
properties as stated in Section 5 of [ChCo4].

Also recall from [Ch3], for f, g ∈ H1,2,

(4.2) d(fg) = f · dg + g · df.
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Moreover, from [ChCo4] and [Ch3], if f is a function depending only on r and g is a
function independent of r, then by the polar identity, one gets < df, dg >= 0.

Lemma 4.3 (Weak Poincare inequality). For BR ⊂ X, 3R < 1
5
, f ∈ H1,2(X),

(4.4)

∫
BR(x)

|f − fx,R|2 ≤ τXR
2

∫
B3R(x)

|df |2.

Proof. Define, for x ∈ X,

(4.5) Box((1, x), a, b) = {(t, y) ∈ C(X)||t− 1| < a, dX(x, y) < b}.

Put

(4.6) Box1 = Box((1, x), R,R), Box2 = Box((1, x), 3R, 3R) ⊂ C(X)

So Box1 ⊂ B2R((1, x)) ⊂ Box2. We extend f to be a H1,2 function independent of r
on C(X). Assume fBall is the average of f on the ball B2R((1, x)) ⊂ C(X),

(4.7)

∫
BR(x)

|f − fx,R|2 = C(n)R−1

∫
Box1

|f − fx,R|2 ≤ C(n)R−1

∫
Box1

|f − fBall|2

≤ C(n)R−1

∫
B2R((1,x))

|f − fBall|2 ≤ C(n)τR

∫
B2R((1,x))

|df |2

≤ C(n)τR

∫
Box2

|df |2 = τXR
2

∫
B3R(x)

|df |2.

The first and last identity come from the Fubini theorem. Note fx,R is also the
average of f over Box1, and we used the Poincare inequality on C(X) in the middle
inequality. �

We remark, a weak Poincare inequality is already enough for many purposes. Since
X is a length space, by [HaKo] one has (0.3) on X. As in [Ch3], [ChCo4], we define
a positive operator ∆X on X. Note by (0.2), (0.3) the compact embedding lemma
1.3 is true on X. So by the standard elliptic theory, on X we have a basis {φj}∞j=0

for L2(X) and a sequence µj →∞ such that ∆Xφj = µjφj, compare [Ch3], [ChCo4].
Moreover, one can do Moser iteration on X, so φi is Hölder continuous; see [Lin],
[GT]. These have applications in Section 6.

Next we show, even the cross section X may not be a manifold, there is still a
separation of variables formula for ∆ on C(X). See [Ch1] for the classical case.

Recall that < ·, · > is the inner product on T ∗M∞ as in [Ch3], [ChCo4],

Lemma 4.8.

(4.9) ∆(fg) = f∆g + g∆f − 2 < df, dg > .

Proof. Since d(fg) = f ·dg+g ·df , for any Lipschitz (or H1,2) function φ with compact
support, we have (recall ∆ is positive)

(4.10)

∫
< df, g · dφ+ φ · dg > −

∫
gφ∆f = 0.
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Exchange the role of f and g, we get

(4.11)

∫
< d(fg), dφ > −

∫
φ(f∆g + g∆f − 2 < df, dg >) = 0.

�

Similarly, by d(f ◦ g) = f ′(g)dg, we get

(4.12) ∆f ◦ g = −f ′′(g)|dg|2 + f ′(g)∆g.

Lemma 4.13. On C(X), r2−n is harmonic away from the pole.

Proof. By the results in Section 4 of [ChCo1], r2−n is the uniform limit of a sequence
of harmonic functions G. So by the proof of Lemma 3.17, r2−n is harmonic. �

By the maximum principle on X (Section 7 in [Ch3]), we have

Lemma 4.14. If X is compact, and ∆Xf = 0, then f is a constant.

Theorem 4.15. Assume u lies in the ring generated by functions of the form u = fg
where f depends only on r and g depends only on x. Then on C(X) \ {p∞},

(4.16) ∆u = −∂
2u

∂r2
− n− 1

r

∂u

∂r
+

1

r2
∆Xu.

Proof. Compare [ChTa1]. By (4.12) and Lemma 4.13, on the cone C(X) we have

(4.17) ∆f(r) = −f ′′(r)− f ′n− 1

r
.

Next we apply Lemma 4.8, recall < df, dg >= 0. We pick a test function φ of the form
φ = a(r)b(x). By scaling we see, ∆g(R, x) = R−2∆g(1, x). Assume a is supported
over the interval [α, β],

(4.18)

∫
C(X)

< dg, dφ >=

∫ β

α

(t1−n
∫
X

t−2 < dg, a(t)db > dx)dt,

here in the second integral we view g and b as functions on the cross section X =
(1, X). So we compute

(4.19)

∫
C(X)

< dg, dφ >=

∫ β

α

(t−n−1

∫
X

a(t)b(x)∆Xgdx)dt. =

∫
φr−2∆Xg.

Since we can choose arbitrary a, b, and ∆g(R, x) = R−2∆g(1, x), we get

(4.20) ∆g(R, x) = R−2∆Xg.

This suffices to complete the proof. �

Using transformation DR : (r, x) 7→ (Rr, x), we deduce from the existence and
uniqueness of G∞ that

(4.21) G∞(DRx,DRy) = R2−nG∞(x, y).

So G∞(p∞, x) = d(p∞, x)2−ng(x) for some Lipschitz function g. By (4.16) and Lem-
mas 4.8, 4.14, g = C is a constant.

Corollary 4.22.

(4.23) G∞(p∞, x) = (n− 2)−1µX(X)−1d2−n(p∞, x).
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Proof. We know G∞(p∞, x) = Cd2−n(p∞, x). We construct a test function φ = φ(r)
such that φ is a smooth function of r, φ = 1 for r small and φ = 0 for r ≥ 1. So

(4.24)

1 =

∫
G(p∞, y)∆φ(y) =

∫ 1

0

(−φ′′ − n− 1

r
φ′)Cr2−nrn−1µX(X)dr

= −CµX(X)

∫ 1

0

(n− 2)φ′dr = (n− 2)CµX(X).

�

Corollary 4.25. Assume ∆u = f on BR(p∞) \ {p∞}, f ∈ L∞, and

(4.26) lim
x→p
|u(x)|d(x, p∞)n−2 = 0.

Then ∆u = f on BR(p∞).

Proof. By the De Giorgi-Nash-Moser theorem, u is bounded and Hölder continuous.
In our case, G∞(p∞, x) = Cd(p∞, x)2−n, so the proof goes exactly like the Rn case
(where the maximum principle is used). For details see [Lin]. �

Relation (4.23) implies the Colding-Minicozzi asymptotic formula, [CoMi1], com-
pare [LiTW]. In fact, we rescale the manifold Mn to get a sequence of manifolds that
converges to C(X), a tangent cone at infinity, see [ChCo2]. By Theorem 3.21, the
new (rescaled) Green’s functions converge to the Green’s function on C(X).

Theorem 4.27 (Colding-Minicozzi). On a noncompact manifold Mn with RicMn ≥ 0
and (0.4) we have

(4.28) lim
d(x,p)→∞

d(x, p)n−2G(p, x) = (n− 2)−1(n lim
R→∞

R−n Vol(BR(p)))−1.

Note the tangent cones may not be unique; in collapsing case, a tangent cone might
not be a metric cone, [ChCo2], [Per].

5. Heat kernels on noncompact spaces

We assume in this section, all the manifolds Mn are noncompact, satisfying (0.1).
On Mn, write H(x, y, t) for the heat kernel; we denote by HR(x, y, t) the Dirichlet
heat kernel on the metric ball BR(p), put HR = 0 outside BR(p).

One technical issue is, the boundary ∂BR(p) = d−1(R) may not be smooth, here
d = d(p, ·). However, we can approximate d by a Morse function dε, see [Hir], and
(assuming) R is not a critical value, etc. So in the sequel we always assume the
boundary are smooth.

Lemma 5.1. Assume RicMn ≥ −(n − 1)Λ. Then there is a function ε(t,Λ, R) with
limR→∞ ε(t,Λ, R) = 0 for t > 0, and

(5.2)

∫
M−BR(x)

H(x, y, t)dy ≤ ε(t,Λ, R).
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Proof. By the Bishop-Gromov inequality, it’s easy to see

(5.3) Vol(B√t(x)) ≤ C1(n,Λ, t)eC2(n,Λ,t)d(x,y) Vol(B√t(y)).

Put sΛ(r) = (1/
√

Λ) sinh
√

Λr. We now use the Li-Yau estimate (1.16):

(5.4)

∫
M−BR(x)

H(x, y, t)dy

≤C ′(n,Λ, t)
∫
M−BR(x)

Vol−1(B√t(x))e−d(x,y)2/5teC2(n,Λ,t)d(x,y)

=C ′(n,Λ, t)

∫ ∞
R

e−r
2/5teC2rA(r)sn−1

Λ (r)dr/

∫ √t
0

A(r)sn−1
Λ (r)dr

≤C ′
∫ ∞
R

e−r
2/5teC2rsn−1

Λ (r)dr/

∫ √t
0

sn−1
Λ (r)dr = ε(t,Λ, R).

Here A(r)sn−1
Λ (r) is the surface area element of ∂BR(x). We used the fact A(r) is

non-increasing (Bishop-Gromov inequality) and assumed, without lose of generality,
R >

√
t. �

Lemma 5.5. Let (Mn, p) be a noncompact complete manifold. Then

(5.6) lim
R→∞

HR(x, ·, t) = H(x, ·, t).

The convergence is uniform, and uniformly in L1, on any finite interval t ∈ [0, T ].

Proof. Assume R > max{T, 2d(x, p)}. Put

(5.7) M(R) = sup{H(x, y, t)|y ∈ ∂BR(x), 0 < t ≤ T},
by (1.17) and volume comparison we have

(5.8) M(R) ≤ sup
0<t≤T

C(n,Λ, T )t−C1(n)e−R
2/5teC2(n,Λ,T )R Vol(BR(p))−1,

so limR→∞M(R) Vol(BR(p)) = 0. By the maximum principle,

(5.9) H(x, y, t)−M(R) ≤ HR(x, y, t) ≤ H(x, y, t).

Combining this with Lemma 5.1, we have

(5.10) ‖HR(x, ·, t)−H(x, ·, t)‖L1 < ε(n,Λ, T, R),

and limR→∞ ε(n,Λ, T, R) = 0. �

Assume λj is the j-th Dirichlet eigenvalue of the Laplacian on BR(p), φj is the
corresponding eigenfunction, ‖φj‖L2(BR(p) = 1.

Lemma 5.11. There exists a constant C(n,Λ, R) such that

(5.12) C(n,Λ, R)−1R−2k
2
n ≤ λk ≤ C(n,Λ, R)R−2k2.

Proof. Since R fixed, we have Vol(Br(x)) ≥ C0(n,Λ, R)rn Vol(BR(p)), for r < 2R and
Br(x) with nonempty intersection with BR(p). Then since HR ≤ H, we can follow
the heat kernel argument as in page 178 of [SY] to get the lower bound of λk.

The upper bound follows from an argument of Cheng, see page 105 of [SY]. �
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Lemma 5.13. For any N > 0, there is a function ε(N,Λ, R, δ) such that for any
fixed R, limδ→0 ε(N,Λ, R, δ) = 0, And for k such that λk < N ,

(5.14)

∫
A(p,R−δ,R)

|φk|2 ≤ ε(N,Λ, R, δ).

Here A(p,R− δ, R) is the annulus {z|R− δ ≤ d(p, z) ≤ R}.

Proof. By (1.16) and the Bishop-Gromov inequality, when t = 1,

(5.15)

∫
A(p,R−δ,R)

|φk|2 ≤ eλk
∫

A(p,R−δ,R)

H(x, x, 1)dx

≤ eN
∫

A(p,R−δ,R)

C(n,Λ, R)

Vol(BR(p))
dx ≤ ε(N,Λ, R, δ).

�

As before, assume Mn
i

dGH−→M∞ in the pointed measured Gromov-Hausdorff sense,
Mi is noncompact, satisfies (0.1). Write λj,i for the j-th Dirichlet eigenvalue over
BR(pi) ⊂Mn

i . φj,i is the corresponding eigenvalue:

(5.16) ∆φj,i = λj,iφj,i;

∫
BR(pi)

φj,iφk,i = δjk.

Lemma 5.17. For fixed j, k > 0, assume (for a subsequence of the eigenvalues),
λj,i → λj,∞, λk,i → λk,∞. Then there is a subsequence (denoted also by φj,i, φk,i) that
converges uniformly on compact subsets of BR, and also in L2(BR), to two locally
Lipschitz functions φj,∞, φk,∞. Moreover,

(5.18) ∆φj,∞ = λj,∞φj,∞, ∆φk,∞ = λk,∞φk,∞,

∫
BR(p)

φj,∞φk,∞ = δjk.

Proof. The results is clear in view of Lemma 5.11, Lemma 1.14 and Lemma 3.17. The
L2 convergence and the orthonormal property for the limit functions are implied by
locally uniform convergence and Lemma 5.13. �

By Lemma 5.11, we can assume, after passing to a subsequence, that every eigen-
value and eigenfunction converge:

(5.19) lim
i→∞

λj,i = λj,∞, lim
i→∞

φj,i = φj,∞.

Write

(5.20) HR,∞ =
∞∑
j=1

e−λj,∞tφj,∞(x)φj,∞(y).

For all fixed t, x, by Lemma 5.11 and Lemma 1.11, Lemma 1.14,

(5.21) HR,i(x, ·, t)→ HR,∞(x, ·, t).
The convergence is in L2, and is locally uniform. Note we don’t know if HR,∞ (and
φj,∞, λj,∞) is well defined. For the moment (before Lemma 5.40), we fix, by a diagonal
argument, one sequence Rk →∞, and one subsequence {Mn

iv} of {Mn
i } such that for
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each k, HRk,i → HRk,∞. For simplicity, we just write {Mn
i } for this subsequence of

manifolds. So by the results on smooth manifolds, for Rj < Rk,

(5.22) 0 ≤ HRj ,∞(x, y, t) ≤ HRk,∞(x, y, t) ≤ C(n,Λ)e−d
2(x,y)/5teCΛt

Vol1/2∞ (B√t(x)) Vol1/2∞ (B√t(y))
.

Thus we can also assume that the nondecreasing sequence HRj ,∞ converges pointwise
to some function H∞. We will prove that H∞ is well defined.

By (5.9) and the locally uniform convergence of HR,i to HR,∞ (5.21), the Li-Yau
estimate (1.16) is also true for H∞:

(5.23) 0 ≤ H∞(x, y, t) ≤ C(n,Λ)e−d
2(x,y)/5teCΛt

Vol1/2∞ (B√t(x)) Vol1/2∞ (B√t(y))
.

Note we need to renormalize the measures whenever {Mn
i } is collapsing. Clearly,

when RicMn
i
≥ 0, we also have a lower bound of H∞ as in (1.18).

Corollary 5.24.

(5.25)

∫
M∞

H∞(x, z, s)H∞(z, y, t− s)dz = H∞(x, y, t).

Proof. By (5.21), (5.25) is true for HR,∞. Write H∞(x, z, s) = HR,∞(x, z, s) + ε1R(z),
similarly H∞(z, y, t− s) = HR,∞(z, y, t− s) + ε2R(z), here HR,∞ = 0 outside BR(p∞),
ε1R, ε

2
R ≥ 0 are two functions. In view of Lemmas 5.1, 5.5, (5.21) and (5.23),

(5.26) lim sup
R→∞

(‖ε1R(z)‖L1 + ‖ε2R(z)‖L1) = 0, ‖ε1R(z)‖L∞ + ‖ε2R(z)‖L∞ < C(t, s,M∞).

Now (5.25) is clear. �

Corollary 5.27.

(5.28)

∫
M∞

H∞(x, y, t)dy = 1.

Proof. By (5.21), Lemmas 5.1 and 5.5. �

Lemma 5.29. For any Lipschitz function f with compact support,

(5.30) |
∫
M∞

HR,∞(x, y, t)f(y)dy − f(x)| ≤ ε(t, ‖f‖L∞ ,Lipf).

Here for any F,L > 0, limt→0 ε(t, F, L) = 0. The conclusion is also true for H∞.

Proof. By an argument similar to those given in Lemma 5.1 and Lemma 5.5. Note on
smooth manifolds, when t→ 0, the integral of HR is smaller than, but almost equal
to 1, and tends to concentrate on smaller and smaller balls centered at x. In view of
(5.21) and the Li-Yau estimate (5.23), we easily get (5.30). �

Let the Sobolev space
◦
H1,2(BR(p∞)) be defined as in [Ch3], i.e. the H1,2 closure of

the set of Lipschitz functions supported in the interior of BR(p∞),

Lemma 5.31. The space
◦
H1,2(BR(p∞)) is contained in Φ, the L2-linear span of

functions φj,∞. In particular, any Lipschitz function with support in BR−δ lies in Φ.
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Proof. If not, by approximation, we have a Lipschitz function f∞ with compact sup-
port and an ε > 0 such that

(5.32)
∞∑
j=1

(

∫
BR(p∞)

f∞φj,∞)2 < (1− 3ε)‖f∞‖2
L2 .

Using Lemma 1.8, we can transplant f∞ back to a Lipschitz function, fi, on Mn
i , with

compact support which is close to f∞ in L∞, such that the energy of fi is close to
that of f∞. Write

(5.33) fi =
N∑
j=1

aj,iφj,i +RN,i, RN,i =
∞∑

j=N+1

aj,iφj,i.

Notice,

(5.34) lim
i→∞

aj,i =

∫
M∞

f∞φj,∞.

So by the min-max principle and Lemma 5.11, limi→∞ ‖∇fi‖L2 = ∞, we get a con-
tradiction to the construction of fi, Lemma 1.8. �

Remark, it is not clear if we have φj,∞ ∈
◦
H1,2.

Now for Lipschitz functions fi with compact support inBR(pi) ⊂Mn
i (i = 1, 2, ...,∞),

fi → f∞ uniformly, we have

(5.35) fi =
∞∑
j=1

aj,iφj,i, aj,i =

∫
Mn
i

fiφj,i.

So aj,i → aj,∞. Clearly,

(5.36)

∫
BR(pi)

HR,i(x, y, t)fi(y)dy =
∞∑
j=1

e−λj,itaj,iφj,i(x).

We say h(x, t) is a locally strong solution, if h continuous, Lipschitz in x, ∂h
∂t

exists,

continuous on M ×R+, and when t fixed, −∆h = ∂h
∂t

, i.e.

(5.37)

∫
Ω

ψ
∂h

∂t
+

∫
Ω

< dxh, dxψ >= 0,

for all Lipschitz functions ψ with compact support.
By Lemma 5.11, Lemma 1.11 and 1.14,

(5.38) lim
k→∞

∑
j=k

|e−λjtφj(x)dyφj(y)| = 0.

So HR,i is a locally strong solution of the heat equation. Similarly the function,

(5.39) hi(x, t) =

∫
BR

HR,i(x, y, t)fi(y)dy (i = 1, 2, ...,∞),

is also a locally strong solution. Note for the case i =∞ we used also Lemma 5.17.
For locally strong solutions on M∞, there is also a weak maximum principle:
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Lemma 5.40. Assume h is a locally strong solution on B2R × [0, T + 1], then if

(5.41) h|BR×{0} ≤ 0, h|∂BR×[0,T ] ≤ 0.

Then h ≤ 0 on BR × [0, T ].

Proof. Define

(5.42) m(s) = sup{h(x, s)|x ∈ BR,
∂h

∂t
(x, s) ≤ 0}.

Since h, ∂h
∂t

(x, s) are continuous functions, it’s easy to show that m is nonincreasing
and m(0) = 0 implies m(s) ≤ 0 for all s > 0. Now by the weak maximum principle
for Poisson equations (see [GT], [Ch3] or (5.37)), we have, when s fixed,

(5.43) sup{h(x, s)|x ∈ BR} = m(s) ≤ 0.

�

Now we can address the uniqueness of H∞. Recall that (Mi, pi) → (M∞, p∞).

Assume for R > 0, we got two limits H
(1)
4R,∞, H

(2)
4R,∞ through different subsequences of

manifolds.

Theorem 5.44. For x, y ∈ BR(p∞), t < T , there is an ε(R) > 0 such that

(5.45) lim
R→∞

ε(R) = 0,

(5.46) H
(1)
4R,∞(x, y, t) < H

(2)
4R,∞(x, y, t) + ε(R).

Proof. We can assume R > T 2 > t2 and R > 4. Assume (5.46) is not true, then there
is a point a ∈ BR(p∞) and 0 < r < 1 such that

(5.47) H
(1)
4R,∞(x, y, t) ≥ H

(2)
4R,∞(x, y, t) + ε(R),

for y ∈ B2r(a). We then construct a test function f ≥ 0 such that, f Lipschitz,
supported in Br(a),

(5.48) 2

∫
Br(a)

f ≥ Vol(Br(a)) sup
Br(a)

f.

Clearly, for R <∞, the functions,

(5.49) Fk(z, s) =

∫
Br(a)

H
(k)
4R,∞(z, y, s)f(y)dy, (k = 1, 2),

are locally strong solutions of the heat equation, and (by the construction of f),

(5.50) F1(x, t) ≥ F2(x, t) + ε

∫
Br(a)

f ≥ F2(x, t) +
ε(R)

2
Vol(Br(a)) sup

Br(a)

f.

For a point z near ∂B2R(p∞), say d(z, p) = 2R, d(a, z) ≥ R,

(5.51) Fk(z, s) < Vol(Br(a))
C(n)

Vol(B√s(z))
e−R

2/5seCR sup
Br(a)

f, (k = 1, 2).

By a standard argument of the Bishop-Gromov inequality,

(5.52) Fk(z, s) < C1(n)
Vol(Br(a))

Vol(B1(p))
s−

n
2 e−R

2/5seC
′R sup

Br(a)

f, (k = 1, 2).
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Next we consider the case that s is small. Since f is fixed, by (5.30), Fk → f uniformly
on B2R(p) when s→ 0.

In view of the weak maximum principle on B2R(p∞)× [0, T ] (Lemma 5.40), clearly
we should choose ε(R) such that that for 0 ≤ s ≤ T ,

(5.53)
C1(n)

Vol(B1(p))
s−

n
2 e−R

2/5seC
′R <

ε(R)

4
,

by the maximum principle we got a contradiction to (5.50). �

Theorem 5.54. H∞ is well defined. For fixed t > 0, xi → x∞, we have Hi(xi, ·, t)→
H∞(x∞, ·, t) in L1. When H∞ is continuous, this convergence is also uniform.

Proof. By the previous theorem and the construction of H∞ (compare (5.9)), we see
H∞ is independent of the choice of subsequences, so well defined.

We already know, by (5.9), (5.21), (5.23), that locally Hi → H∞ in L1. The proof
of global L1 convergence is similar with Lemma 5.1, Lemma 5.5, using (1.18), (5.23).

Recall (see [SY] Chapter 4), there is a Harnack inequality

(5.55) Hi(x, y1, t1) ≤ Hi(x, y2, t2)(
t2
t1

)n exp(
d2(y1, y2)

4(t2 − t1)
+ C(n,Λ)(t2 − t1)),

for 0 < t1 < t2. If H∞ is continuous, then locally H∞ is uniformly continuous
(especially, with respect to t), clearly by (5.55) the convergence Hi → H∞ must be
uniform, compare with (5.23). �

We now want to interpret the meaning of H∞. Recall from [ChCo4] and [Ch3], ∆
is a positive self-adjoint operator. So −∆ generates a semigroup e−t∆.

Assume fi is supported in BK(pi) ⊂ BR(pi). Use the notation in (5.35), define

(5.56) WR,i(t)fi(x) =
∞∑
j=1

aj,i cos(
√
λj,it)φj,i.

By the finite speed of propagation (see [Ta]), when t is fixed and R > K+ t, WR,i(t)f
is independent of R. We write Wi(t)f for WR,i(t)f with R big. For i <∞,

(5.57) e−t∆fi(x) =

∫
Mn
i

Hi(x, y, t)fi(y)dy =

∫ ∞
−∞

e−s
2/4tWi(s)fi(x)ds,

see [CGT], [Ta]. Define

(5.58) WR,∞(t)f∞(x) =
∞∑
j=1

aj,∞ cos(
√
λj,∞t)φj,∞.

We notice that WR,i (i = 1, 2, ...,∞) does not increase L2 norm, and we should use
Lemma 1.8 and approximation to construct C2 functions fi on Mn

i that converges to
f∞. Clearly, WR,ifi → WR,∞f∞ in L2. We remark that generally, we don’t know if
WR,∞ is well defined.

Theorem 5.59. If the limit M∞ is a smooth manifold, and the limit measure is the
canonical measure on M∞, then H∞ is the heat kernel on M∞.
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Proof. In the noncollapsing case, by Colding’s theorem [Co], the limit measure is the
canonical measure on M∞; when M∞ = Rk for some k, the limit measure is also a
multiple of the standard Lebesgue measure on Rk, see [ChCo2]. In these cases, the
Laplacian we defined on M∞ is the same one from the original smooth structure of
M∞.

Pick any C∞0 function f supported in BR, So

(5.60)

∫
M∞

(∆k)fφj,∞ = (λj,∞)k
∫
M∞

fφj,∞ = (λj,∞)kaj,∞.

Since (∆k)f ∈ C∞0 , we have for all k, limj→∞(λj,∞)kaj,∞ = 0. By Lemma 5.11, we
have for all k, limj→∞ j

kaj,∞ = 0. So WR,∞(t)f is a classical solution of the wave
equation, when R is big enough, WR,∞(t)f = W∞(t)f is independent of R. Since M∞
is a smooth manifold,

(5.61) e−t∆f(x) =
1√
4πt

∫ ∞
−∞

e−s
2/4tW∞(s)f(x)ds.

In view of (5.57), combined with the fact W∞ does not increase L2 norm and Hi(x, y, t)
converges uniformly to H∞(x, y, t), we have

(5.62) e−t∆f(x) =

∫
M∞

H∞(x, y, t)f(y)dy.

That concludes the proof. �

6. Laplacian on metric cones

In this section, we assume Mn
i

dGH−→ C(X) where C(X) is a metric cone; RicMn
i
≥ 0,

Mn
i is complete noncompact and satisfies (0.4) uniformly, n ≥ 3.
Write p∞ for the pole of C(X), define r(x) = d(x, p∞).

Theorem 6.1. If M∞ = C(X), then H∞ is the integral kernel of the semigroup e−t∆.

Proof. In view of (5.23), (5.25) and the Young’s inequality, one can define a semigroup
E(t) on L2(M∞) by

(6.2) E(t)f(x) =

∫
M∞

H∞(x, y, t)f(y)dy.

We want to compare E(t) with e−t∆. First, by Theorem 3.21, (1.18) and (5.23), one
easily get

(6.3) G∞(x, y) =

∫ ∞
0

H∞(x, y, t)dt.

Pick any L2 function f with compact support. Write

(6.4) F (x) =

∫
M∞

G∞(x, y)f(y)dy.
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We compute

(6.5)

E(t)F − F
t

=

∫
M∞

(
H∞(x, y, t)

t
)

∫
M∞

∫ ∞
0

H∞(y, z, s)f(z)dsdzdy

− 1

t

∫
M∞

∫ ∞
0

H∞(x, z, s)f(z)dsdz

= −1

t

∫ t

0

∫
M∞

H∞(x, z, s)f(z)dzds.

So by (0.4), (5.23), (5.30) and the Young’s inequality we have

(6.6) lim
t→0

E(t)F − F
t

→ −f.

in L2 and L1.
Now we use the assumption that M∞ = C(X) is a noncollapsed cone. Recall the

results in Section 4, we can construction a function φ = φ(r) such that φ is a smooth
function of r, where r(x) = d(p∞, x) is the distance from the pole, and

(6.7) φ(r) = 1 if r < R, φ(r) = 0 if r ≥ R + 2, ∇φ ≤ C0

√
φ.

So on M∞ = C(X) we have ∆φ = −φ′′ − (n − 1)φ′/r. This function can serve as a
cut off function.

We prove, if F, f = ∆F ∈ L2 have compact support, then

(6.8) F =

∫
C(X)

G∞(x, y)f(y)dy.

In fact, assume {fk} is a sequence of Lipschitz functions, fk → f in L2, and all fk
together with f, F are supported in the ball BK(p∞). So the function

(6.9) Fk =

∫
C(X)

G∞(x, y)fk(y)dy,

satisfies ∆Fk = fk by the discussion in Section 3. Consider the equation ∆(Fk−F ) =
fk − f , i.e.

(6.10)

∫
C(X)

< dFk − dF, du > −
∫
C(X)

(fk − f)u = 0,

for any u ∈
◦
H1,2. We set u = φ(Fk − F ), so du = dφ(Fk − F ) + φ(dFk − dF ). By the

Schwartz inequality,

(6.11)
‖
√
φd(Fk − F )‖2

L2 − C0‖(Fk − F )|A(R,R+2)‖L2‖
√
φd(Fk − F )|A(R,R+2)‖L2

− ‖(fk − f)|BK‖L2‖(Fk − F )|BK‖L2 ≤ 0,

here A(R,R+2) is the annulus {x|R ≤ r(x) ≤ R+2}. Note we have a definite bound
for ‖Fk|BK‖L2 by (1.19) and the Young’s inequality. Note also by (1.19) we get, for
R > K,

(6.12)
‖(Fk − F )|A(R,R+2)‖L2 = ‖Fk|A(R,R+2)‖L2 < C(n, ‖f‖L1)(R4−2nRn−1)1/2

= C(n, ‖f‖L1)R(3−n)/2 < C(n, ‖f‖L1),
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since n ≥ 3. So first, we get that ‖d(Fk − F )‖L2 < ∞ by letting R → ∞. Then by
letting k → ∞, we have ‖d(Fk − F )‖L2 → 0, since we can choose R in (6.11) such
that ‖

√
φd(Fk − F )|A(R,R+2)‖L2 small.

Now by the (2, 2)-Poincare inequality, (0.4), (1.19) and Young’s inequality, Fk → F
in L2 on compact sets. Also notice, on any compact sets, the right hand side of (6.9)
converges to the right hand side of (6.8) in L2, by the Young inequality (however, in
view of (1.19), these convergences might not be globally L2). That’s enough to imply
(6.8).

Next we compute, for f = ∆F , F, f ∈ L2,

(6.13)
‖∆(φF )− f‖L2 ≤ ‖F∆φ‖L2 + ‖(φ− 1)f‖L2 + 2‖ < dφ, dF > ‖L2

≤ C(n)‖F |A(R,R+2)‖L2 + ‖f |A(R,R+2)‖L2 + C0‖dF |A(R,R+2)‖L2 .

Similar to (6.11), one shows ‖dF‖L2 < ∞. So if R → ∞, we have φF → F and
∆(φF )→ f = ∆F in L2. Moreover, by (6.8),

(6.14) φF (x) =

∫
C(X)

G∞(x, y)∆(φF )(y)dy.

So the computation (6.5) is valid for the functions φF and ∆(φF ):

(6.15) lim
t→0

E(t)φF − φF
t

= −∆(φF )

in L2. We already know E(t) in (6.2) is a semigroup, its infinitesimal generator is a
closed operator (see [Ta]). So by the above computations, this infinitesimal generator
must be the self-adjoint operator −∆ on C(X). �

By the discussion in the beginning of Section 4, we have an eigenfunction expansion
of Laplacian on the unit cross section X. We denote by φj (j = 0, 1, 2, ...) the
renormalized eigenfunctions with eigenvalues µj > 0, note φ0 = Vol(X)−1/2. µj →∞
when j →∞.

Put d = DiamX. Using an argument of Gromov (see [Gr], and Theorem 4.8 of
[Ch3]), we have a more precise estimate of µj:

(6.16) µj > C(τ, κ)−1d−2j
2
κ .

On the other hand, on each ball Br(xk) of radius r = d/2(j + 2) on X, we define a
Lipschitz function ψk supported in Br(xk) using MacShane’s lemma ([Ch3], [ChCo3]):

(6.17) ψk(xk) = r, ψk(∂Br(xk)) = 0, Lipψk = 1,

so we can follow the argument of Cheng (see p.105 of [SY]), and get

(6.18) µj ≤ C(κ)j2d−2.

Now we can use Moser iteration, |φj| is bounded by a definite power of j:

(6.19) |φj| ≤ C(d, κ, τ)jN(τ,κ).

Moreover, φj is Hölder continuous, see [GT], [Lin].

Write νj =
√
µj + α2, here m = n − 1, α = (1 − m)/2. We write x, y in polar

coordinates, x = (r1, x1), y = (r2, x2).
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Theorem 6.20.

(6.21) H∞ = (r1r2)α
∞∑
j=0

(
1

2t
)e−(r21+r22)/4tIνj(

r1r2

2t
)φj(x1)⊗ φj(x2).

Here Iνj are the modified Bessel functions:

(6.22) Iν(z) = (
z

2
)ν
∞∑
k=0

1

k!Γ(ν + k + 1)
(
z

2
)2k.

In our case ∆ is a self-adjoint operator on the whole cone C(X), namely, including
the pole p∞. By Corollary 4.25, the separation of variable formula (4.16) works for
u = f(r)g(x) on the whole C(X) if u and ∆u are bounded on C(X) \ {p∞}. So
the heat kernel on M∞ has the expression as on the right hand side of (6.21); the
proof goes exactly like the classical case, see [Ch1], [Ch2] page 592, [ChTa1] and [Ta]
chapter 8, we omit the details. By Theorem 6.1, we have (6.21).

By Stirling’s formula, (6.16) and (6.18), we see the series (6.21) converges uni-
formly, when t is bounded away from 0 and r1, r2 stay bounded. In particular, H∞ is
continuous, so by Theorem 5.54 we have Hi → H∞ uniformly.

If one of the two points x and y, say, y, is the pole p∞, then there is only one term
in (6.21). Note ν0 = −α = (m− 1)/2, m = n− 1,

(6.23) H∞(p∞, x, t) = (
1

4πt
)
n
2 e−(r2)/4t 2πn/2

Γ(n/2)
(Vol(X))−1.

As a corollary, we get a new proof of Li’s asymptotic formula for heat kernels [Li1]:

Corollary 6.24 (Li). Assume Mn is a complete noncompact manifold satisfying
(0.4), RicMn ≥ 0. Then

(6.25) lim
t→∞

Vol(B√t(p))H(p, y, t) = (4π)−n/2ωn.

ωn is the volume of the unit ball in Rn.

Proof. Notice,

(6.26) lim
t→∞

Vol(B√t(p))t
−n/2 = v0 = n−1 Vol(X).

So we need to show,

(6.27) lim
t→∞

tn/2 Vol(X)H(p, y, t) = (4π)−n/2nωn.

Assume ti → ∞, Mn
i = (Mn, p, t−1

i dx2)
dGH−→ C(X) for some metric cone C(X); see

[ChCo1]. The heat kernel Hi(p, x, t) on Mn
i is

(6.28) Hi(p, y, 1) = tn/2H(p, y, t).

Here we identify p, x ∈ Mn
i with p, x ∈ M , however, dMn

i
(p, x) = t

−1/2
i dM(p, x), dMn

i

is the distance on Mn
i . In particular, dMn

i
(p, x)→ 0 as i→∞. Since Mn

i

dGH−→ C(X),
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by Theorem 5.54 and (6.23) we have

(6.29)

lim
t→∞

tn/2 Vol(X)H(p, y, t) = Vol(X) lim
i→∞

Hi(p, x, 1)

= Vol(X)H∞(p∞, p∞, 1) = (4π)−n/2
2πn/2

Γ(n/2)
.

We just need to recall nωn = 2πn/2(Γ(n/2))−1 (see [Ta] Chapter 3).
Finally in view of the almost rigidity theorem [ChCo1], we see the above results

holds for all sequences ti →∞. This suffices to complete the proof. �

Similarly, we get the asymptotic formula for heat kernels in [LiTW]:

Corollary 6.30 (Li-Tam-Wang). Assume Mn is a complete noncompact manifold
satisfying (0.4), RicMn ≥ 0. Then for p ∈Mn, and any R, T > 0,

(6.31) lim
d(p,x)→∞

Vol(BR−1d(p,x)(p))H(p, x, Td(p, x)2R−2) =
ωn

(4πT )n/2eR2/4T
.

Proof. We use the same argument as in Corollary 6.24. For xi with d(p, xi)→∞, we
study the heat kernels on the sequence Mn

i = (Mn, p, R2d(p, xi)
−2dx2). �

We can similarly get a local asymptotic formula for H∞.

7. Eigenvalues on compact limit spaces

We assume Mn
i

dGH−→M∞, with RicMn
i
≥ −(n−1)Λ, M∞ compact. A point x ∈M∞

is said to be regular, x ∈ Rk, if all tangent cones at x equal to Rk; see [ChCo2].

Lemma 7.1. If x ∈ Rn ⊂M∞, then

(7.2) lim
t→0

H∞(x, x, t)t
n
2 = (4π)−

n
2 .

Proof. Use a similar argument as the one in Corollary 6.24. �

Theorem 7.3. Assume Mn
i

dGH−→ M∞, RicMn
i
≥ −(n − 1)Λ, and for some v0 > 0,

Vol(Mn
i ) ≥ v0. Then

(7.4) lim
j→∞

j−
2
nλj,∞ = 4πΓ(

n

2
+ 1)

2
nµ∞(M∞)−

2
n .

Proof. In this case we don’t need to renormalize the volume on Mn
i (see [ChCo2]).

Note for some D we have DiamMn
i ≤ D, i = 1, 2, ...,∞, by the Bishop-Gromov

inequality and (1.16), we get

(7.5) t
n
2H∞(x, x, t) ≤ C(n,Λ, D, v0).

Moreover, almost every point of M∞ is in Rn. Now by Corollary 7.1, for x ∈ Rn,
t
n
2H∞(x, x, t)→ (4π)−n/2 when t→ 0. By the dominated convergence theorem,

(7.6) lim
t→0

t
n
2

∫
M∞

H∞(x, x, t)dx = (4π)−
n
2 µ∞(M∞).
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Finally, by applying the Karamata Tauberian theorem (see [Ta] Chapter 8), we have

(7.7) lim
λ→∞

λ−
n
2N(λ) = µ∞(M∞)Γ(

n

2
+ 1)−1(4π)−

n
2 ,

where N(λ) is the number of eigenvalues smaller than λ. Clearly this implies the
Weyl asymptotic formula (7.4). �

When the limit space M∞ is collapsed, at present our results are less satisfactory.
Recall the notion of Minkowski dimensions; see [Ma]. Assume Z is a metric space.
For d > 0, let N(Z, ε) ∈ Z be the minimal integer such that Z can be covered by
N(Z, ε) many balls of radius ε. Put

(7.8) v−d (Z) = lim inf
ε→0

εdN(Z, ε),

(7.9) v+
d (Z) = lim sup

ε→0
εdN(Z, ε).

Here v±d (M∞) can be ∞. The upper (lower) Minkowski dimension is defined by

(7.10) dimMink(Z) (dimMink(Z)) = inf{d|v+
d (Z) = 0 (v−d (Z) = 0)}.

Lemma 7.11. There exist E1(n), E2(n) > 0 such that for any d > 0,

(7.12) lim sup
t→0

t
d
2

∫
M∞

H∞(x, x, t)dx ≤ E2v
+
d (M∞),

and if, in addition, RicMn
i
≥ 0, then

(7.13) E1v
−
d (M∞) ≤ lim inf

t→0
t
d
2

∫
M∞

H∞(x, x, t)dx.

Proof. Let ∪1≤j≤N(M∞,
√
t)B
√
t(xj) be a covering of M∞ by a minimal set of balls of

radius
√
t. We add up the integrals of H∞ on these ball an use Corollary 2.7 to get

the estimates (7.12), (7.13). �

Lemma 7.14. If v+
d (M∞) < c <∞, then there exist C such that

(7.15) λj,∞ > Cj
2
d .

Proof. We can follow an argument of Gromov (see [Gr] or Theorem 4.8 in [Ch3]).
Here we use the assumption v+

d (M∞) < c < ∞ to estimate the number of balls that
is needed to cover M∞. �

Lemma 7.16. If v−d (M∞) > c > 0, then there exist C depending on n, c, such that

(7.17) λj,∞ ≤ Cj
2
d .

If k is the maximal integer such that Rk ⊂M∞ is not empty, then

(7.18) λj,∞ < C(M∞)(j)
2
k .
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Proof. For r > 0, Mn
i contains j = C(n, c)r−d many disjoint balls of radius r for i

big enough. The result follows by a well known argument of Cheng [Cheng]; see page
105 of [SY].

If k is the maximal integer such that Rk ⊂M∞ is not empty, then the k-Hausdorff
measure of M∞ is positive (see [ChCo3] or [Ch3]). So v−k (X) > 0. By (7.17) we get
(7.18). �

If one can also prove for any d > k,

(7.19) lim
t→0

t
d
2

∞∑
j=0

e−λj,∞t = lim
t→0

t
d
2

∫
M∞

H∞(x, x, t)dx = 0,

then by Lemma 7.11, dM(M∞), the Minkowski dimension of M∞ is no more than k.
Combine with the results in [ChCo3] and [Ch3], dM(M∞) = k. However, at present
we don’t know how to get (7.19). One related question is,

Question: Is there an ε(n) > 0, such that for any Mn with RicMn ≥ 0, any
eigenfunction φ of ∆ and any set E with Vol(E) < εVol(M), we have

(7.20)

∫
Mn−E

φ2 >
1

2

∫
Mn

φ2 ?
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