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Preface

COPYING AND DISTRIBUTION POLICY
This document is part of a series of notes titled
"Maxima by Example" and is made available
via the author’s webpage http://www.csulb.edu/˜woollett /
to aid new users of the Maxima computer algebra system.

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute them
to others as long as you charge no more than the costs of printi ng.

These notes (with some modifications) will be published in b ook form
eventually via Lulu.com in an arrangement which will contin ue
to allow unlimited free download of the pdf files as well as th e option
of ordering a low cost paperbound version of these notes.

Feedback from readers is the best way for this series of notesto become more helpful to new users of Maxima. All
comments and suggestions for improvements will be appreciated and carefully considered.

LOADING FILES
The defaults allow you to use the brief version load(fft) to l oad in the
Maxima file fft.lisp.
To load in your own file, such as qxxx.mac
using the brief version load(qxxx), you either need to place
qxxx.mac in one of the folders Maxima searches by default, or
else put a line like:

file_search_maxima : append(["c:/work2/###.{mac,mc}"] ,file_search_maxima )$

in your personal startup file maxima-init.mac (see later in this chapter
for more information about this).

Otherwise you need to provide a complete path in double quote s,
as in load("c:/work2/qxxx.mac"),

We always use the brief load version in our examples, which ar e generated
using the XMaxima graphics interface on a Windows XP compute r, and copied
into a fancy verbatim environment in a latex file which uses t he fancyvrb
and color packages.

Maxima.sourceforge.net. Maxima, a Computer Algebra Syste m. Version 5.18.1
(2009). http://maxima.sourceforge.net/

The homemade functionfll(x) (first, last, length) is used to return the first and last elements of lists (as well as the length), and is
automatically loaded in withmbe1util.mac from Ch. 1. We will include a reference to this definition whenworking with lists.

This function has the definitions

fll(x) := [first(x),last(x),length(x)]$
declare(fll,evfun)$

Some of the examples used in these notes are from the Maxima html help manual or the Maxima mailing list:
http://maxima.sourceforge.net/maximalist.html .

The author would like to thank the Maxima developers for their friendly help via the Maxima mailing list.
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3.1 Solving Ordinary Differential Equations

3.2 Solution of One First Order Ordinary Differential Equat ion (ODE)

3.2.1 Summary Table

ode2 and ic1
gsoln : ode2 (de, u, t);

where de involves ’diff(u,t).

psoln : ic1 (gsoln, t = t0, u = u0);

desolve
gsoln : desolve(de, u(t) );

where de includes the equal sign (=)

and ’diff(u(t),t) and possibly u(t).

psoln : ratsubst(u0val,u(o),gsoln)

plotdf
plotdf ( dudt, [t,u], [trajectory_at, t0, u0],

[direction,forward], [t, tmin, tmax],

[u, umin, umax] )$

rk
points : rk ( dudt, u, u0, [t, t0, tlast, dt] )$

where dudt is a function of t and u which

determines diff(u,t).

Table 1: Methods for One First Order ODE

We will use these four different methods to solve the first order ordinary differential equation

du

d t
= e−t + u (3.1)

subject to the condition that whent = 2, u = −0.1.

3.2.2 Exact Solution with ode2 and ic1

Most ordinary differential equations have no known exact solution (or the exact solution is a complicated expression
involving many terms with special functions) and one normally uses approximate methods. However, some ordinary
differential equations have simple exact solutions, and many of these can be found usingode2, desolve, or contrib ode.
The manual has the following information aboutode2

Function:ode2 (eqn, dvar, ivar)
The functionode2solves an ordinary differential equation (ODE) offirst or second order. It takes three
arguments: an ODE given byeqn, the dependent variabledvar, and the independent variableivar . When
successful, it returns either an explicit or implicit solution for the dependent variable.%cis used to represent
the integration constant in the case of first-order equations, and%k1and%k2 the constants for second-order
equations. The dependence of the dependent variable on the independent variable does not have to be written
explicitly, as in the case ofdesolve, but the independent variable must always be given as the third argument.
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If the differential equation has the structureLeft(dudt,u,t) = Right(dudt,u,t) ( hereu is the dependent variable andt is
the independent variable), we can always rewrite that differential equation asde = Left(dudt,u,t) - Right(dudt,u,t) = 0,
or de = 0.

We can use the syntaxode2(de,u,t), with the first argument an expression which includes derivatives, instead of the com-
plete equation including the” = 0” on the end, andode2will assume we meande = 0 for the differential equation. (Of
course you can also useode2 ( de=0, u, t)

We rewrite our example linear first order differential equation Eq. 3.1 in the way just described, using thenoun form
’diff , which uses a single quote. We then useode2, and call the general solutiongsoln.

(%i1) de : ’diff(u,t)- u - exp(-t);
du - t

(%o1) -- - u - %e
dt

(%i2) gsoln : ode2(de,u,t);
- 2 t

%e t
(%o2) u = (%c - -------) %e

2

The general solution returned byode2contains one constant of integration%c, and is an explicit solution foru as a func-
tion of t, although the above does not bind the symbolu.

We next find the particular solution which hast = 2, u = −0.1 using ic1, and call this particular solutionpsoln. We
then check the returned solution in two ways: 1. does it satisfy the conditions given toic1?, and 2. does it produce a zero
value for our expressionde?

(%i3) psoln : ic1(gsoln,t = 2, u = -0.1),ratprint:false;
- t - 4 2 2 t 4

%e ((%e - 5) %e + 5 %e )
(%o3) u = - -----------------------------------

10
(%i4) rhs(psoln),t=2,ratsimp;

1
(%o4) - --

10
(%i5) de,psoln,diff,ratsimp;
(%o5) 0

Both tests are passed by this particular solution. We can nowmake a quick plot of this solution usingplot2d.

(%i6) us : rhs(psoln);
- t - 4 2 2 t 4

%e ((%e - 5) %e + 5 %e )
(%o6) - -----------------------------------

10
(%i7) plot2d(us,[t,0,7],

[style,[lines,5]],[ylabel," "],
[xlabel,"t0 = 2, u0 = -0.1, du/dt = exp(-t) + u"])$
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which looks like

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0  1  2  3  4  5  6  7

 

t0 = 2, u0 = -0.1, du/dt = exp(-t) + u

Figure 1: Solution for whicht = 2, u = −0.1

3.2.3 Exact Solution Using desolve

desolveuses Laplace transform methods to find an exact solution. To be able to usedesolve, we need to write our example
differential equation Eq.3.1 in a more explicit form, with every u -> u(t) , and include the= sign in the definition of
the differential equation.

(%i1) eqn : ’diff(u(t),t) - exp(-t) - u(t) = 0;
d - t

(%o1) -- (u(t)) - u(t) - %e = 0
dt

(%i2) gsoln : desolve(eqn,u(t));
t - t

(2 u(0) + 1) %e %e
(%o2) u(t) = ---------------- - -----

2 2
(%i3) eqn,gsoln,diff,ratsimp;
(%o3) 0 = 0
(%i4) bc : subst ( t=2, rhs(gsoln)) = - 0.1;

2 - 2
%e (2 u(0) + 1) %e

(%o4) ---------------- - ----- = - 0.1
2 2

(%i5) solve ( eliminate ( [gsoln, bc],[u(0)]), u(t) ),ratpr int:false;
- t t - 2 t - 4

- 5 %e - %e + 5 %e
(%o5) [u(t) = -------------------------------]

10
(%i6) us : rhs(%[1]);

- t t - 2 t - 4
- 5 %e - %e + 5 %e

(%o6) -------------------------------
10
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(%i7) us, t=2, ratsimp;
1

(%o7) - --
10

(%i8) plot2d(us,[t,0,7],
[style,[lines,5]],[ylabel," "],
[xlabel,"t0 = 2, u0 = -0.1, du/dt = exp(-t) + u"])$

and we get the same plot as before. The functiondesolvereturns a solution in terms of the “initial value”u(0) , which
here meansu(t = 0) , and we must go through an extra step to eliminateu(0) in a way that assures our chosen bound-
ary conditiont = 2, u - -0.1 is satisfied.

We have checked that the general solution satisfies the givendifferential equation in%i3 , and have checked that our
particular solution satisfies the desired condition att = 2 in %i7 .

If your problem requires that the value of the solutionus be specified att = 0 , the route to the particular solution is
much simpler than what we used above. You simply usesubst ( u(0) = -1, rhs (gsoln) ) if, for example,
you wanted a particular solution to have the property that when t = 0 , u = -1 .

(%i9) us : subst( u(0) = -1,rhs(gsoln) ),ratsimp;
- t 2 t

%e (%e + 1)
(%o9) - -----------------

2
(%i10) us,t=0,ratsimp;
(%o10) - 1

3.2.4 Numerical Solution and Plot with plotdf

We next useplotdf to numerically integrate the given first order ordinary differential equation, draw a direction field plot
which governs any particular solution, and draw the particular solution we have chosen.

The default color choice ofplotdf is to use small blue arrows give the local direction of the trajectory of the partic-
ular solution passing though that point. This direction canbe defined by an angleα such that ifu′ = f(t,u), then
tan(α) = f(t,u), and at the point(t0, u0),

du = f(t0,u0)× d t = d t ×

(

du

d t

)

t=t0, u=u0

(3.2)

This equation determines the increased u in the value of the dependent variableu induced by a small increased t in the
independent variablet at the point(t0, u0). We then define a local vector witht componentd t andu componentd u, and
draw a small arrow in that direction at a grid of chosen pointsto construct a direction field associated with the given first
order differential equation. The length of the small arrow can be increased some to reflect large values of the magnitude
of du/d t.

For one first order ordinary differential equation,plotdf , has the syntax

plotdf( dudt,[t,u], [trajectory_at, t0, u0], options ... )

in which dudt is the function of(t,u) which determines the rate of changedu/d t.
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(%i1) plotdf(exp(-t) + u, [t, u], [trajectory_at,2,-0.1],
[direction,forward], [t,0,7], [u, -6, 1] )$

produces the plot

0 1 2 3 4 5 6 7

-5

-4

-3

-2

-1

0

1
u

t

Figure 2: Direction Field for the Solutiont = 2, u = −0.1

(We have thickened the red curve using theConfig, Linewidth menu option ofplotdf , followed byReplot).

The help manual has an extensive discussion and examples of the use of the direction field plot utilityplotdf .

3.2.5 Numerical Solution with 4th Order Runge-Kutta: rk

Although theplotdf function is useful for orientation about the shapes and types of solutions possible, if you need a list
with coordinate points to use for other purposes, you can usethe fourth order Runge-Kutta functionrk .

For one first order ordinary differential equation, the syntax has some faint resemblance to that ofplotdf :

rk ( dudt, u, u0, [ t, t0, tlast, dt ] )

in which we are assuming thatu is the dependent variable andt is the independent variable, anddudt is that function of
(t, u) which locally determines the value ofdu/d t. This will numerically integrate the corresponding first order ordinary
differential equation and return a list of pairs of(t, u) on the solution curve which has been requested:

[ [t0, u0], [t0 + dt, y(t0 + dt)], .... ,[tlast, y(tlast)] ]



8

For our example first order ordinary differential equation,choosing the same initial conditions as above, and choosing
dt = 0.01 ,

(%i1) fpprintprec:8$
(%i2) points : rk (exp(-t) + u, u, -0.1, [ t, 2, 7, 0.01 ] )$
(%i3) %, fll;
(%o3) [[2, - 0.1], [7.0, - 4.7990034], 501]
(%i4) plot2d( [ discrete, points ], [ t, 0, 7],

[style,[lines,5]],[ylabel," "],
[xlabel,"t0 = 2, u0 = -0.1, du/dt = exp(-t) + u"])$

(We have used our homemade functionfll(x) , loaded in at startup with the other functions defined inmbe1util.mac ,
available with the Ch. 1 material. We have provided the definition of fll in the preface of this chapter. Instead of
%, fll ; , you could use[%[1],last(%),length(%)]; to get the same information.)

The plot looks like

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 2  3  4  5  6  7

 

t0 = 2, u0 = -0.1, du/dt = exp(-t) + u

Figure 3: Runge-Kutta Solution witht = 2, u = −0.1
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3.3 Solution of One Second Order ODE or Two First Order ODE’s

3.3.1 Summary Table

ode2 and ic1
gsoln : ode2 (de, u, t); where de involves ’diff(u,t,2)

and possibly ’diff(u,t).

psoln : ic2 (gsoln, t = t0, u = u0, ’diff(u,t) = up0);

desolve
atvalue ( ’diff(u,t), t = 0, v(0) );

gsoln : desolve(de, u(t) );

where de includes the equal sign (=), ’diff(u(t),t,2),

and possibly ’diff(u(t),t) and u(t).

One type of particular solution is returned by using

psoln : subst([ u(o) = u0, v(0) = v0] , gsoln)

plotdf
plotdf ( [dudt, dvdt], [u, v], [trajectory_at, u0, v0],

[u, umin, umax],[v, vmin, vmax], [tinitial, t0],

[direction,forward], [versus_t, 1],[tstep, timestepval ],

[nsteps, nstepsvalue] )$

rk
points : rk ([dudt, dvdt ],[u, v],[u0, v0],[t, t0, tlast, dt] )$

where dudt and dvdt are functions of t,u, and v which

determine diff(u,t) and diff(v,t).

Table 2: Methods for One Second Order or Two First Order ODE’s

We apply the above four methods to the simple second order ordinary differential equation:

d2 u

d t2
= 4u (3.3)

subject to the conditions that whent = 2, u = 1 anddu/d t = 0.

3.3.2 Exact Solution with ode2, ic2, and eliminate

The main difference here is the use ofic2 rather thanic1.

(%i1) de : ’diff(u,t,2) - 4 * u;
2

d u
(%o1) --- - 4 u

2
dt

(%i2) gsoln : ode2(de,u,t);
2 t - 2 t

(%o2) u = %k1 %e + %k2 %e
(%i3) de,gsoln,diff,ratsimp;
(%o3) 0
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(%i4) psoln : ic2(gsoln,t=2,u=1,’diff(u,t) = 0);
2 t - 4 4 - 2 t

%e %e
(%o4) u = --------- + ---------

2 2
(%i5) us : rhs(psoln);

2 t - 4 4 - 2 t
%e %e

(%o5) --------- + ---------
2 2

(%i6) us, t=2, ratsimp;
(%o6) 1
(%i7) plot2d(us,[t,0,4],[y,0,10],

[style,[lines,5]],[ylabel," "],
[xlabel," U versus t, U’’(t) = 4 U(t), U(2) = 1, U’(2) = 0 "])$

plot2d: expression evaluates to non-numeric value somewhe re in plotting range.

which produces the plot

 0

 2

 4

 6

 8

 10

 0  0.5  1  1.5  2  2.5  3  3.5  4

 

 U versus t, U’’(t) = 4 U(t), U(2) = 1, U’(2) = 0 

Figure 4: Solution for whicht = 2, u = 1, u′ = 0

Next we make a “phase space plot” which is a plot ofv = du/d t versusu over the range1 ≤ t ≤ 3.

(%i8) vs : diff(us,t),ratsimp;
- 2 t - 4 4 t 8

(%o8) %e (%e - %e )
(%i9) for i thru 3 do

d[i]:[discrete,[float(subst(t=i,[us,vs]))]]$
(%i10) plot2d( [[parametric,us,vs,[t,1,3]],d[1],d[2], d[3] ],

[x,0,8],[y,-12,12],
[style, [lines,5,1],[points,4,2,1],

[points,4,3,1],[points,4,6,1]],
[ylabel," "],[xlabel," "],

[legend," du/dt vs u "," t = 1 ","t = 2","t = 3"] )$
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which produces the plot
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 du/dt vs u 
 t = 1 

t = 2
t = 3

Figure 5:t = 2, y = 1, y′ = 0 Solution

If your boundary conditions are, instead, fort=0, u = 1 , and fort = 2, u = 4 , then one can eliminate the
two constants “by hand” instead of usingic2 (see also next section).

(%i4) bc1 : subst(t=0,rhs(gsoln)) = 1$
(%i5) bc2 : subst(t = 2, rhs(gsoln)) = 4$
(%i6) solve(

eliminate([gsoln,bc1,bc2],[%k1,%k2]), u ),
ratsimp, ratprint:false;

- 2 t 4 4 t 8 4
%e ((4 %e - 1) %e + %e - 4 %e )

(%o6) [u = -----------------------------------------]
8

%e - 1
(%i7) us : rhs(%[1]);

- 2 t 4 4 t 8 4
%e ((4 %e - 1) %e + %e - 4 %e )

(%o7) -----------------------------------------
8

%e - 1
(%i8) us,t=0,ratsimp;
(%o8) 1
(%i9) us,t=2,ratsimp;
(%o9) 4
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3.3.3 Exact Solution with desolve, atvalue, and eliminate

The functiondesolveuses Laplace transform methods which are set up to expect theuse of initial values for dependent
variables and their derivatives. (However, we will show howyou can impose more general boundary conditions.) If the
dependent variable isu(t) , for example, the solution is returned in terms of a constantu(0) , which refers to the value
of u(t = 0) (here we are assuming that the independent variable ist ). To get a simple result fromdesolvewhich we
can work with (for the case of a second order ordinary differential equation), we can use theatvalue function with the
syntax (for example):

atvalue ( ’diff(u,t), t = 0, v(0) )

which will allow desolveto return the solution to a second order ODE in terms of the pair of constants( u(0), v(0) ) .
Of course, there is nothing sacred about using the symbolv(0) here. The functionatvalue should be invoked before the
use ofdesolve.

If the desired boundary conditions for a particular solution refer tot = 0 , then you can immediately find that particular
solution using the syntax (ifug is the general solution, say)

us : subst( [ u(0) = u0val, v(0) = v0val], ug ),

or else by usingratsubst twice.

In our present example, the desired boundary conditions refer to t = 2 , and impose conditions on the value ofu and
its first derivative at that value oft . This requires a little more work, and we useeliminate to get rid of the constants
(u(0), v(0)) in a way that allows our desired conditions to be satisfied.

(%i1) eqn : ’diff(u(t),t,2) - 4 * u(t) = 0;
2

d
(%o1) --- (u(t)) - 4 u(t) = 0

2
dt

(%i2) atvalue ( ’diff(u(t),t), t=0, v(0) )$
(%i3) gsoln : desolve(eqn,u(t));

2 t - 2 t
(v(0) + 2 u(0)) %e (v(0) - 2 u(0)) %e

(%o3) u(t) = --------------------- - ------------------- ----
4 4

(%i4) eqn,gsoln,diff,ratsimp;
(%o4) 0 = 0
(%i5) ug : rhs(gsoln);

2 t - 2 t
(v(0) + 2 u(0)) %e (v(0) - 2 u(0)) %e

(%o5) --------------------- - -----------------------
4 4

(%i6) vg : diff(ug,t),ratsimp$
(%i7) ubc : subst(t = 2,ug) = 1$
(%i8) vbc : subst(t = 2,vg) = 0$
(%i9) solve (

eliminate([gsoln, ubc, vbc],[u(0), v(0)]), u(t) ),
ratsimp,ratprint:false;

- 2 t - 4 4 t 8
%e (%e + %e )

(%o9) [u(t) = -------------------------]
2
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(%i10) us : rhs(%[1]);
- 2 t - 4 4 t 8

%e (%e + %e )
(%o10) -------------------------

2
(%i11) subst(t=2, us),ratsimp;
(%o11) 1
(%i12) vs : diff(us,t),ratsimp;

- 2 t - 4 4 t 8
(%o12) %e (%e - %e )
(%i13) subst(t = 2,vs),ratsimp;
(%o13) 0
(%i14) plot2d(us,[t,0,4],[y,0,10],

[style,[lines,5]],[ylabel," "],
[xlabel," U versus t, U’’(t) = 4 U(t), U(2) = 1, U’(2) = 0 "])$

plot2d: expression evaluates to non-numeric value somewhe re in plotting range.
(%i15) for i thru 3 do

d[i]:[discrete,[float(subst(t=i,[us,vs]))]]$
(%i16) plot2d( [[parametric,us,vs,[t,1,3]],d[1],d[2], d[3] ],

[x,0,8],[y,-12,12],
[style, [lines,5,1],[points,4,2,1],

[points,4,3,1],[points,4,6,1]],
[ylabel," "],[xlabel," "],

[legend," du/dt vs u "," t = 1 ","t = 2","t = 3"] )$

which generates the same plots found with theode2method above.

If the desired boundary conditions are thatu have given values att = 0 and t = 3 , then we can proceed from the
same general solution above as follows withup being a partially defined particular solution (assumeu(0) = 1 and
u(3) = 2 ):

(%i17) up : subst(u(0) = 1, ug);
2 t - 2 t

(v(0) + 2) %e (v(0) - 2) %e
(%o17) ---------------- - ------------------

4 4
(%i18) ubc : subst ( t=3, up) = 2;

6 - 6
%e (v(0) + 2) %e (v(0) - 2)

(%o18) -------------- - ---------------- = 2
4 4

(%i19) solve(
eliminate ( [ u(t) = up, ubc ],[v(0)] ), u(t) ),

ratsimp, ratprint:false;
- 2 t 6 4 t 12 6

%e ((2 %e - 1) %e + %e - 2 %e )
(%o19) [u(t) = --------------------------------------- ---]

12
%e - 1

(%i20) us : rhs (%[1]);
- 2 t 6 4 t 12 6

%e ((2 %e - 1) %e + %e - 2 %e )
(%o20) ------------------------------------------

12
%e - 1

(%i21) subst(t = 0, us),ratsimp;
(%o21) 1
(%i22) subst (t = 3, us),ratsimp;
(%o22) 2
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(%i23) plot2d(us,[t,0,4],[y,0,10],
[style,[lines,5]],[ylabel," "],
[xlabel," U versus t, U’’(t) = 4 U(t), U(0) = 1, U(3) = 2 "])$

plot2d: expression evaluates to non-numeric value somewhe re in plotting range.

which produces the plot
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 U versus t, U’’(t) = 4 U(t), U(0) = 1, U(3) = 2 

Figure 6: Solution foru(0) = 1, u(3) = 2

If instead, you need to satisfyu(1) = -1 andu(3) = 2 , you could proceed fromgsoln andug as follows:

(%i24) ubc1 : subst ( t=1, ug) = -1$
(%i25) ubc2 : subst ( t=3, ug) = 2$
(%i26) solve(

eliminate ( [gsoln, ubc1, ubc2],[u(0),v(0)]), u(t) ),
ratsimp, ratprint:false;

- 2 t 4 4 t 12 8
%e ((2 %e + 1) %e - %e - 2 %e )

(%o26) [u(t) = --------------------------------------- ---]
10 2

%e - %e
(%i27) us : rhs(%[1]);

- 2 t 4 4 t 12 8
%e ((2 %e + 1) %e - %e - 2 %e )

(%o27) ------------------------------------------
10 2

%e - %e
(%i28) subst ( t=1, us), ratsimp;
(%o28) - 1
(%i29) subst ( t=3, us), ratsimp;
(%o29) 2
(%i30) plot2d ( us, [t,0,4], [y,-2,8],

[style,[lines,5]],[ylabel," "],
[xlabel," U versus t, U’’(t) = 4 U(t), U(1) = -1, U(3) = 2 "])$
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which produces the plot
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 U versus t, U’’(t) = 4 U(t), U(1) = -1, U(3) = 2 

Figure 7: Solution foru(1) = −1, u(3) = 2

The simplest case of usingdesolveis the case in which you impose conditions on the solution andits first derivative at
t = 0 , in which case you simply use:

(%i4) psoln : subst([u(0) = 1,v(0)=0],gsoln);
2 t - 2 t

%e %e
(%o4) u(t) = ----- + -------

2 2
(%i5) us : rhs(psoln);

2 t - 2 t
%e %e

(%o5) ----- + -------
2 2

in which we have chosen the initial conditionsu(0) = 1 , andv(0) = 0 .
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3.3.4 Numerical Solution and Plot with plotdf

Given a second order autonomous ODE, one needs to introduce asecond dependent variablev(t) , say, which is defined
as the first derivative of the original single dependent variableu(t) . Then for our example, the starting ODE

d2 u

d t2
= 4u (3.4)

is converted into two first order ODE’s
du

d t
= v,

dv

d t
= 4u (3.5)

and theplotdf syntax for two first order ODE’s is

plotdf ( [dudt, dvdt], [u, v], [trajectory_at, u0, v0], [u, u min, umax],
[v, vmin, vmax], [tinitial, t0], [versus_t, 1],
[tstep, timestepval], [nsteps, nstepsvalue] )$

in which at t = t0 , u = u0 andv = v0 . If t0 = 0 you can omit the option[tinitial, t0] . The options
[u, umin, umax] and [v, vmin, vmax] allow you to control the horizontal and vertical extent of the phase
space plot (herev versusu) which will be produced. The option[versus_t,1] tells plotdf to create a separate plot
of bothu andv versus the dependent variable. The last two options are onlyneeded if you are not satisfied with the plots
and want to experiment with other than the default values oftstep andnsteps .

Another option you can add is[direction,forward] , which will display the trajectory fort greater than or equal
to t0 , rather than for a default interval around the valuet0 which corresponds to[direction,both] .
Here we invokeplotdf for our example.

(%i1) plotdf ( [v, 4 * u], [u, v], [trajectory_at, 1, 0],
[u, 0, 8], [v, -10, 10], [versus_t, 1],

[tinitial, 2])$

The plot versust is

0.8 1.2 1.6 2 2.4 2.8 3.2
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Figure 8: u(t) and u’(t) vs.t for u(2) = 1, u′(2) = 0
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and the phase space plot is

1 2 3 4 5 6 7

-8

-4

0

4

8

v

u

Figure 9: u’(t) vs. u(t) foru(2) = 1, u′(2) = 0

In both of these plots we used theConfig menu to increase the linewidth, and then clicked onReplot . We also cut and
pasted the colorred to be the second choice on the color cycle (instead of green) used in the plot versus the independent
variablet . Note that no matter what you call your independent variable, it will always be calledt on the plot of the
dependent variables versus the independent variable.

3.3.5 Numerical Solution with 4th Order Runge-Kutta: rk

To use the fourth order Runge-Kutta numerical integratorrk for this example, we need to follow the procedure used in
the previous section usingplotdf , converting the second order ODE to a pair of first order ODE’s.

The syntax for two first order ODE’s with dependent variables[u,v] and independent variablet is

rk ( [ dudt, dvdt ], [u,v], [u0,v0], [t, t0, tmax, dt] )

which will produce the list of lists:

[ [t0, u0,v0],[t0+dt, u(t0+dt),v(t0+dt)], ..., [tmax, u(t max),v(tmax)] ]

For our example, following our discussion in the previous section with plotdf , we use

points : rk ( [v, 4 * u], [u, v], [1, 0], [t, 2, 3.6, 0.01] )

We again use the homemade functionfll (see the preface) to look at the first element, the last element, and the length
of various lists.

(%i1) fpprintprec:8$
(%i2) points : rk([v,4 * u],[u,v],[1,0],[t,2,3.6,0.01])$
(%i3) %, fll;
(%o3) [[2, 1, 0], [3.6, 12.286646, 24.491768], 161]
(%i4) uL : makelist([points[i][1],points[i][2]],i,1,le ngth(points))$
(%i5) %, fll;
(%o5) [[2, 1], [3.6, 12.286646], 161]



18

(%i6) vL : makelist([points[i][1],points[i][3]],i,1,le ngth(points))$
(%i7) %, fll;
(%o7) [[2, 0], [3.6, 24.491768], 161]
(%i8) plot2d([ [discrete,uL],[discrete,vL]],[x,1,5],

[style,[lines,5]],[y,-1,24],[ylabel," "],
[xlabel,"t"],[legend,"u(t)","v(t)"])$

which produces the plot
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Figure 10: Runge-Kutta foru(2) = 1, u′(2) = 0

Next we make a phase space plot ofv versusu from the result of the Runge-Kutta integration.

(%i9) uvL : makelist([points[i][2],points[i][3]],i,1,l ength(points))$
(%i10) %, fll;
(%o10) [[1, 0], [12.286646, 24.491768], 161]
(%i11) plot2d( [ [discrete,uvL]],[x,0,13],[y,-1,25],

[style,[lines,5]],[ylabel," "],
[xlabel," v vs. u "])$

which produces the phase space plot
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 v vs. u 

Figure 11: R-K Phase Space Plot foru(2) = 1, u′(2) = 0
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3.4 Examples of ODE Solutions

3.4.1 Ex. 1: Fall in Gravity with Air Friction: Terminal Velo city

Let’s explore a problem posed by Patrick T. Tam (A Physicist’s Guide to Mathematica, Academic Press, 1997, page 349).

A small body falls downward with an initial velocityv0 from a heighth near the surface of the earth. For
low velocities (less than about24m/s), the effect of air resistance may be approximated by a frictional
force proportional to the velocity. Find the displacement and velocity of the body, and determine the terminal
velocity. Plot the speed as a function of time for several initial velocities.

The net vector forceF acting on the object is thus assumed to be the (constant) force of gravity and the (variable) force
due to air friction, which is in a direction opposite to the direction of the velocity vectorv. We can then write Newton’s
Law of motion in the form

F = mg− bv = m
dv

d t
(3.6)

In this vector equation,m is the mass in kg.,g is a vector pointing downward with magnitudeg, andb is a positive
constant which depends on the size and shape of the object andon the viscosity of the air. The velocity vectorv points
down during the fall.

If we choose they axis positive downward, with the pointy = 0 the launch point, then the nety components of the force
and Newton’s Law of motion are:

Fy = mg − b vy = m
dvy
d t

(3.7)

whereg is the positive number9.8m/s2 and since the velocity componentvy > 0 during the fall, the effects of gravity
and air resistance are in competition.

We see that the rate of change of velocity will become zero at the instant thatmg − b vy = 0, or vy = mg/b, and the
downward velocity stops increasing at that moment, the ”terminal velocity” having been attained.

While working with Maxima, we can simplify our notation and let vy → v and(b/m) → a so bothv anda represent
positive numbers. We then use Maxima to solve the equationd v/d t = g − a v. The dimension of each term of this
equation must evidently be the dimension ofv/t, soa has dimension1/t.

(%i1) de : ’diff(v,t) - g + a * v;
dv

(%o1) -- + a v - g
dt

(%i2) gsoln : ode2(de,v,t);
a t

- a t g %e
(%o2) v = %e (------- + %c)

a
(%i3) de, gsoln, diff,ratsimp;
(%o3) 0

We then useic1 to get a solution such thatv = v0 whent = 0.

(%i4) psoln : expand ( ic1 (gsoln,t = 0, v = v0 ) );
- a t

- a t g %e g
(%o4) v = %e v0 - --------- + -

a a
(%i5) vs : rhs(psoln);

- a t
- a t g %e g

(%o5) %e v0 - --------- + -
a a
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For consistency, we must get the correctterminal speedfor larget:

(%i6) assume(a>0)$
(%i7) limit( vs, t, inf );

g
(%o7) -

a

which agrees with our analysis.

To make some plots, we can introduce a dimensionless timeu with the replacementt → u = a t, and a dimensionless
speedw with the replacementv → w = a v/g.

(%i8) expand(vs * a/g);
- a t

a %e v0 - a t
(%o8) ------------ - %e + 1

g
(%i9) %,[t=u/a,v0=w0 * g/a];

- u - u
(%o9) %e w0 - %e + 1
(%i10) ws : collectterms (%, exp (-u));

- u
(%o10) %e (w0 - 1) + 1

As our dimensionless timeu gets large,ws → 1, which is the value of the terminal speed in dimensionless units.

Let’s now plot three cases, two cases with initial speed lessthan terminal speed and one case with initial speed greater
than the terminal speed. (The use of dimensionless units forplots generates what are called “universal curves”, since they
are generally valid, no matter what the actual numbers are).

(%i11) plot2d([[discrete,[[0,1],[5,1]]],subst(w0=0,w s),subst(w0=0.6,ws),
subst(w0=1.5,ws)],[u,0,5],[y,0,2],

[style,[lines,2,7],[lines,4,1],[lines,4,2],[lines,4 ,3]],
[legend,"terminal speed", "w0 = 0", "w0 = 0.6", "w0 = 1.5"],

[ylabel, " "],
[xlabel, " dimensionless speed w vs dimensionless time u"]) $

which produces:
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Figure 12: Dimensionless Speed Versus Dimensionless Time
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An object thrown down with an initial speed greater than the terminal speed (as in the top curve) slows down until its
speed is the terminal speed.

Thus far we have been only concerned with the relation between velocity and time. We can now focus on the implications
for distance versus time. A dimensionless lengthz is a2 y/g and the relationdy/d t = v becomesdz/du = w, or
dz = wdu, which can be integrated over corresponding intervals:z over the interval[0, zf ], andu over the interval
[0,uf ].

(%i12) integrate(1,z,0,zf) = integrate(ws,u,0,uf);
- uf uf

(%o12) zf = - %e (w0 - uf %e - 1) + w0 - 1
(%i13) zs : expand(rhs(%)),uf = u;

- u - u
(%o13) - %e w0 + w0 + %e + u - 1
(%i14) zs, u=0;
(%o14) 0

(Remember the object is launched aty = 0 which means atz = 0). Let’s make a plot of distance travelled vs time
(dimensionless units) for the three cases considered above.

(%i15) plot2d([subst(w0=0,zs),subst(w0=0.6,zs),
subst(w0=1.5,zs)],[u,0,1],[style,[lines,4,1],[lines ,4,2],

[lines,4,3]], [legend,"w0 = 0", "w0 = 0.6", "w0 = 1.5"],
[ylabel," "],
[xlabel,"dimensionless distance z vs dimensionless time u "],
[gnuplot_preamble,"set key top left;"])$

which produces:
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Figure 13: Dimensionless Distance Versus Dimensionless Time
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3.4.2 Ex. 2: One Nonlinear First Order ODE

Let’s solve

x2 y
dy

dx
= xy2 + x3 − 1 (3.8)

for a solution such that whenx = 1, y = 1.

(%i1) de : xˆ2 * y* ’diff(y,x) - x * yˆ2 - xˆ3 + 1;
2 dy 2 3

(%o1) x y -- - x y - x + 1
dx

(%i2) gsoln : ode2(de,y,x);
2 3

3 x y - 6 x log(x) - 2
(%o2) ------------------------ = %c

3
6 x

(%i3) psoln : ic1(gsoln,x=1,y=1);
2 3

3 x y - 6 x log(x) - 2 1
(%o3) ------------------------ = -

3 6
6 x

This implicitly determinesy as a function of the independent variablex By inspection, we see thatx = 0 is a singular
point we should stay away from, so we assume from now on thatx 6= 0.

To look atexplicit solutionsy(x) we usesolve, which returns a list of two expressions depending onx. Since theimplicit
solution is a quadratic iny, we will get two solutions fromsolve, which we cally1 andy2.

(%i4) [y1,y2] : map(’rhs, solve(psoln,y) );
2 2 2 2 2 2

sqrt(6 x log(x) + x + -) sqrt(6 x log(x) + x + -)
x x

(%o4) [- --------------------------, ----------------- ---------]
sqrt(3) sqrt(3)

(%i5) [y1,y2], x = 1, ratsimp;
(%o5) [- 1, 1]
(%i6) de, diff, y= y2, ratsimp;
(%o6) 0

We see from the values atx = 1 thaty2 is the particular solution we are looking for, and we have checked thaty2 satisfies
the original differential equation. From this example, we learn the lesson thatic1 sometimes needs some help in finding
the particular solution we are looking for.

Let’s make a plot of the two solutions found.

(%i7) plot2d([y1,y2],[x,0.01,5],
[style,[lines,5]],[ylabel, " Y "],

[xlabel," X "] , [legend,"Y1", "Y2"],
[gnuplot_preamble,"set key bottom center;"])$
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which produces:
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Figure 14: Positive X Solutions

3.4.3 Ex. 3: One First Order ODE Which is Not Linear in Y’

The differential equation to solve is
(

dx

d t

)2

+ 5x2 = 8 (3.9)

with the initial conditionst = 0, x = 0.

(%i1) de: ’diff(x,t)ˆ2 + 5 * xˆ2 - 8;
dx 2 2

(%o1) (--) + 5 x - 8
dt

(%i2) ode2(de,x,t);
dx 2 2

(%t2) (--) + 5 x - 8
dt

first order equation not linear in y’

(%o2) false

We see that direct use ofode2does not succeed. We can usesolveto get equations which are linear in the first derivative,
and then usingode2on each of the resulting linear ODE’s.

(%i3) solve(de,’diff(x,t));
dx 2 dx 2

(%o3) [-- = - sqrt(8 - 5 x ), -- = sqrt(8 - 5 x )]
dt dt

(%i4) ode2 ( %[2], x, t );
5 x

asin(----------)
2 sqrt(10)

(%o4) ---------------- = t + %c
sqrt(5)
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(%i5) solve(%,x);
2 sqrt(10) sin(sqrt(5) t + sqrt(5) %c)

(%o5) [x = --------------------------------------]
5

(%i6) gsoln2 : %[1];
2 sqrt(10) sin(sqrt(5) t + sqrt(5) %c)

(%o6) x = --------------------------------------
5

(%i7) trigsimp ( ev (de,gsoln2,diff ) );
(%o7) 0
(%i8) psoln : ic1 (gsoln2, t=0, x=0);
solve: using arc-trig functions to get a solution.
Some solutions will be lost.

2 sqrt(10) sin(sqrt(5) t)
(%o8) x = -------------------------

5
(%i9) xs : rhs(psoln);

2 sqrt(10) sin(sqrt(5) t)
(%o9) -------------------------

5
(%i10) xs,t=0;
(%o10) 0

We have selected only one of the linear ODE’s to concentrate on here. We have shown that the solution satisfies the
original differential equation and the given boundary condition.

3.4.4 Ex. 4: Linear Oscillator with Damping

The equation of motion for a particle of massm executing one dimensional motion which is subject to a linear restoring
force proportional to|x| and subject to a frictional force proportional to its speed is

m
d2 x

d t2
+ b

dx

d t
+ kx = 0 (3.10)

Dividing by the massm, we note that if there were no damping, this motion would reduce to a linear oscillator with the
angular frequency

ω0 =

(

k

m

)1/2

. (3.11)

In the presence of damping, we can define

γ =
b

2m
(3.12)

and the equation of motion becomes
d2 x

d t2
+ 2γ

dx

d t
+ ω2

0 x = 0 (3.13)

In the presence of damping, there are now two natural time scales

t1 =
1

ω0

, t2 =
1

γ
(3.14)

and we can introduce a dimensionless timeθ = ω0 t and the dimensionless positive constanta = γ/ω0, to get

d2 x

dθ2
+ 2a

dx

dθ
+ x = 0 (3.15)
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The “underdamped” case corresponds toγ < ω0, or a < 1 and results in damped oscillations around the finalx = 0.
The “critically damped” case corresponds toa = 1, and the “overdamped” case corresponds toa > 1. We specialize to
solutions which have the initial conditionsθ = 0, x = 1, dx/d t = 0 ⇒ dx/dθ = 0.

(%i1) de : ’diff(x,th,2) + 2 * a* ’diff(x,th) + x ;
2

d x dx
(%o1) ---- + 2 a --- + x

2 dth
dth

(%i2) for i thru 3 do
x[i] : rhs ( ic2 (ode2 (subst(a=i/2,de),x,th), th=0,x=1,’d iff(x,th)=0))$

(%i3) plot2d([x[1],x[2],x[3]],[th,0,10],
[style,[lines,4]],[ylabel," "],

[xlabel," Damped Linear Oscillator " ],
[gnuplot_preamble,"set zeroaxis lw 2"],
[legend,"a = 0.5","a = 1","a = 1.5"])$

which produces
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Figure 15: Damped Linear Oscillator

and illustrates why engineers seek the critical damping case, which brings the system tox = 0 most rapidly.
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Now for a phase space plot withdx/dth versusx , drawn for the underdamped case:

(%i4) v1 : diff(x[1],th)$
(%i5) fpprintprec:8$
(%i6) [x5,v5] : [x[1],v1],th=5,numer;
(%o6) [- 0.0745906, 0.0879424]
(%i7) plot2d ( [ [parametric, x[1], v1, [th,0,10],[nticks, 80]],

[discrete,[[1,0]]], [discrete,[ [x5,v5] ] ] ],
[x, -0.4, 1.2],[y,-0.8,0.2], [style,[lines,3,7],

[points,3,2,1],[points,3,6,1] ],
[ylabel," "],[xlabel,"th = 0, x = 1, v = 0"],
[legend," v vs x "," th = 0 "," th = 5 "])$

which shows
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Figure 16: Underdamped Phase Space Plot

Using plotdf for the Damped Linear Oscillator

Let’s useplotdf to show the phase space plot of our underdamped linear oscillator, using the syntax

plotdf ( [dudt, dvdt],[u,v], options...)

which requires that we convert our single second order ODE toan equivalent pair of first order ODE’s. If we let
dx/dθ = v, assume the dimensionless damping parametera = 1/2, we then havedv/dθ = −v− x, and we use
theplotdf syntax

plotdf ( [dxdth, dvdth], [x, v], options... ).

One has to experiment with the number of steps, the step size,and the horizontal and vertical views. Thev(θ) values
determine the vertical position and thex(boldsymbolθ) values determine the horizontal position of a point on the phase
space plot curve. The symbols used for the horizontal and vertical ranges should correspond to the symbols used in the
second argument (here[x,v] ). Since we want to get a phase space plot which agrees with ourwork above, we require
the trajectory begin atθ = 0, x = 1, v = 0, and we integrate forward in dimensionless timeθ.
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(%i8) plotdf([v,-v-x],[x,v],[trajectory_at,1,0],
[direction,forward],[x,-0.4,1.2],[v,-0.6,0.2],

[nsteps,400],[tstep,0.01])$

This will bring up the phase space plotv vs. x, and you can thicken the red curve by clicking theConfig button (which
brings up thePlot Setuppanel), increasing thelinewidth to 3, and then clickingok . To actually see the thicker line, you
must then click on theReplot button. This plot is
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Figure 17: Underdamped Phase Space Plot Using plotdf

To see the separate curvesv(θ) andx(θ), you can click on thePlot Versus tbutton. (The symbolt is simply a placeholder
for the independent variable, which in our case isθ.) Again, you can change the linewidth and colors (we changedgreen
to red) via theConfig andReplot button process, which yields
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Figure 18:x(θ) andv(θ) Using plotdf
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3.4.5 Ex. 5: Underdamped Linear Oscillator with SinusoidalDriving Force

We extend our previous oscillator example by adding a sinusoidal driving force. The equation of motion is now

m
d2 x

d t2
+ b

dx

d t
+ kx = Acos(ω t) (3.16)

We again divide by the massm and let

ω0 =

(

k

m

)1/2

. (3.17)

As before, we define

γ =
b

2m
. (3.18)

Finally, letB = A/m. The equation of motion becomes

d2 x

d t2
+ 2γ

dx

d t
+ ω2

0 x = Bcos(ω t) (3.19)

There are now three natural time scales

t1 =
1

ω0

, t2 =
1

γ
, t3 =

1

ω
(3.20)

and we can introduce a dimensionless timeθ = ω0 t, the dimensionless positive damping constanta = γ/ω0, the di-
mensionless oscillator displacementy = x/B, and the dimensionless driving angular frequencyq = ω/ω0 to get

d2 y

dθ2
+ 2a

dy

dθ
+ y = cos(q θ) (3.21)

The “underdamped” case corresponds toγ < ω0, ora < 1, and we specialize to the casea = 1/2.

(%i1) de : ’diff(y,th,2) + ’diff(y,th) + y - cos(q * th);
2

d y dy
(%o1) ---- + --- + y - cos(q th)

2 dth
dth

(%i2) gsoln : ode2(de,y,th);
2

q sin(q th) + (1 - q ) cos(q th)
(%o2) y = --------------------------------

4 2
q - q + 1

- th/2 sqrt(3) th sqrt(3) th
+ %e (%k1 sin(----------) + %k2 cos(----------))

2 2
(%i3) psoln : ic2(gsoln,th=0,y=1,’diff(y,th)=0);

2
q sin(q th) + (1 - q ) cos(q th)

(%o3) y = --------------------------------
4 2

q - q + 1
4 2 sqrt(3) th 4 sqrt(3) th

(q - 2 q ) sin(----------) q cos(----------)
- th/2 2 2

+ %e (--------------------------------- + ------------- -----)
4 2 4 2

sqrt(3) q - sqrt(3) q + sqrt(3) q - q + 1
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We now specialize to a high (dimensionless) driving angularfrequency case,q = 4, which means that we are assuming
that the actual driving angular frequency is four times as large as the natural angular frequency of this oscillator.

(%i4) ys : subst(q=4,rhs(psoln));
sqrt(3) th sqrt(3) th

224 sin(----------) 256 cos(----------)
- th/2 2 2

(%o4) %e (------------------- + -------------------)
241 sqrt(3) 241

4 sin(4 th) - 15 cos(4 th)
+ --------------------------

241
(%i5) vs : diff(ys,th)$

We now plot both the dimensionless oscillator amplitude andthe dimensionless oscillator velocity on the same plot.

(%i6) plot2d([ys,vs],[th,0,12],
[nticks,100],
[style,[lines,5]],
[legend," Y "," V "],
[xlabel," dimensionless Y and V vs. theta"])$
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Figure 19: Dimensionless Y and V versus Dimensionless Timeθ

We see that the driving force soon dominates the motion of theunderdamped linear oscillator, which is forced to
oscillate at the driving frequency. This dominance evidently has nothing to do with the actual strengthA newtonsof the
peak driving force, since we are solving for a dimensionlessoscillator amplitude, and we get the same qualitative curve
no matter what the size ofA is.
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We next make a phase space plot for the early “capture” part ofthe motion of this system. (Note thatplotdf cannot
numerically integrate this differential equation becauseof the explicit appearance of the dependent variable.)

(%i7) plot2d([parametric,ys,vs,[th,0,8]],
[style,[lines,5]],[nticks,100],

[xlabel," V (vert) vs. Y (hor) "])$
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Figure 20: Dimensionless V Versus Dimensionless Y: Early History

We see the phase space plot being driven to regular oscillations abouty = 0 andv = 0.

3.4.6 Ex. 6: Regular and Chaotic Motion of a Driven Damped Planar Pendulum

The motion is pure rotation in a fixed plane (one degree of freedom), and if the pendulum is a simple pendulum with all
the massm concentrated at the end of a weightless support of lengthL , then the moment of inertia about the support point
is I = mL2, and the angular acceleration isα, and rotational dynamics implies the equation of motion

Iα = mL2
d2θ

d t2
= τ z = −mgLsin θ − c

dθ

d t
+Acos(ωd t) (3.22)

We introduce a dimensionless timeτ = ω0 t and a dimensionless driving angular frequencyω = ωd/ω0, whereω2
0
= g/L,

to get the equation of motion
d2θ

d τ 2
= −sin θ − a

dθ

d τ
+ bcos(ω τ ) (3.23)

To simplify the notation for our exploration of this differential equation, we make the replacementsθ → u, τ → t, and
ω → w ( parametersa, b, andw are dimensionless) to work with the differential equation:

d2 u

d t2
= −sin u− a

du

d t
+ bcos(w t) (3.24)

where now botht andu are dimensionless, with the measure ofu being radians, and the physical values of the pendulum
angle being limited to the range−π ≤ u ≤ π, both extremes being the “flip-over-point” at the top of the motion.

We will use bothplotdf andrk to explore this system, with

du

d t
= v,

dv

d t
= −sinu− av + bcos(w t) (3.25)
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3.4.7 Free Oscillation Case

Usingplotdf , the phase space plot for NO friction and NO driving torque is

(%i1) plotdf([v,-sin(u)],[u,v],[trajectory_at,float( 2* %pi/3),0],
[direction,forward],[u,-2.5,2.5],[v,-2.5,2.5],

[tstep, 0.01],[nsteps,600])$
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Figure 21: No Friction, No Driving Torque: V Versus Angle U

and now we use thePlot Versus t button ofplotdf to show the angleu radians and the dimensionless rate of change of
anglev
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Figure 22: No Friction, No Driving Torque: Angle U [blue] andV [red]
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3.4.8 Damped Oscillation Case

We now include some damping witha = 1/2.

(%i2) plotdf([v,-sin(u)-0.5 * v],[u,v],[trajectory_at,float(2 * %pi/3),0],
[direction,forward],[u,-1,2.5],[v,-1.5,1],

[tstep, 0.01],[nsteps,450])$
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Figure 23: With Friction, but No Driving Force: V Versus Angle U

and now we use thePlot Versus t button ofplotdf to show the angleu radians and the dimensionless rate of change of
angley for the friction present case.
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Figure 24: With Friction, but No Driving Force: Angle U [blue] and V [red]
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3.4.9 Including a Sinusoidal Driving Torque

We now use the Runge-Kutta functionrk to integrate the differential equation set forward in time for ncycles , which
is the same as setting the final dimensionlesstmax equal toncycles * 2* %pi/w , or ncycles * T, where we can call
T the dimensionless period defined by the dimensionless angular frequencyw. The physical meaning ofT is the ratio of
the period of the driving torque to the period of unforced andundamped small oscillations of the free simple pendulum.

For simplicity of exposition, we will callt the “time” andT the “period”. We again use our homemade functionfll
described in the preface.

One cycle (period) of time is divided intonsteps subdivisions, sodt = T/nsteps .

For both the regular and chaotic parameter cases, we have used the same parameters as used inMathematica in Theo-
retical Physics, by Gerd Baumann, Springer/Telos, 1996, pages 46 - 53.

3.4.10 Regular Motion Parameters Case

We find regular motion of this driven system witha = 0.2, b = 0.52, and w = 0.694 , and withu0 = 0.8 rad ,
andv0 = 0.8 rad/unit-time .

(%i1) fpprintprec:8$
(%i2) (nsteps : 31, ncycles : 30, a : 0.2, b : 0.52, w : 0.694)$
(%i3) [dudt : v, dvdt : -sin(u) - a * v + b * cos(w * t),

T : float(2 * %pi/w ) ];
(%o3) [v, - 0.2 v - sin(u) + 0.52 cos(0.694 t), 9.0535811]
(%i4) [dt : T/nsteps, tmax : ncycles * T ];
(%o4) [0.292051, 271.60743]
(%i5) tuvL : rk ([dudt,dvdt],[u,v],[0.8,0.8],[t,0,tmax, dt])$
(%i6) %, fll;
(%o6) [[0, 0.8, 0.8], [271.60743, - 55.167003, 1.1281164], 931]
(%i7) 930 * dt;
(%o7) 271.60743

Plot of u(t) and v(t)

Plot of u(t) and v(t) against t

(%i8) tuL : makelist ([tuvL[i][1],tuvL[i][2]],i,1,lengt h(tuvL))$
(%i9) %, fll;
(%o9) [[0, 0.8], [271.60743, - 55.167003], 931]
(%i10) tvL : makelist ([tuvL[i][1],tuvL[i][3]],i,1,leng th(tuvL))$
(%i11) %, fll;
(%o11) [[0, 0.8], [271.60743, 1.1281164], 931]
(%i12) plot2d([ [discrete,tuL], [discrete,tvL]],[x,0,2 80],

[style,[lines,3]],[xlabel,"t"],
[legend, "u", "v"],

[gnuplot_preamble,"set key bottom left;"])$



34

which produces

-60

-50

-40

-30

-20

-10

 0

 10

 0  50  100  150  200  250

t

u
v

Figure 25: Angle u(t) and v(t)

The above plot shows nine flips of the pendulum at the top:
the first passage over the top atu = -3 pi/2 = -4.7 rad ,
the second passage over the top atu = -7 pi/2 = -11 rad ,
and so on.

Phase Space Plot

We next construct a phase space plot.

(%i13) uvL : makelist ([tuvL[i][2],tuvL[i][3]],i,1,leng th(tuvL))$
(%i14) %, fll;
(%o14) [[0.8, 0.8], [- 55.167003, 1.1281164], 931]
(%i15) plot2d ( [discrete,uvL],[x,-60,5],[y,-5,5],

[style,[lines,3]],
[ylabel," "],[xlabel," v vs u "] )$

which produces (note that we include the early points which are more heavily influenced by the initial conditions):
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Figure 26: Non-Reduced Phase Space Plot
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Reduced Phase Space Plot

Let’s define a Maxima functionreducewhich bringsu back to the interval(-pi, pi ) and then make a reduced phase space
plot. Since this is a strictly numerical task, we can simplify Maxima’s efforts by defining a floating point numberpi once
and for all, and simply work with that definition. You can see the origin of our definition ofreduce in the manual’s
entry on Maxima’s modulus functionmod.

(%i16) pi : float(%pi);
(%o16) 3.1415927
(%i17) reduce(yy) := pi - mod (pi - yy,2 * pi)$
(%i18) float( [-7 * %pi/2,-3 * %pi/2 ,3 * %pi/2, 7 * %pi/2] );
(%o18) [- 10.995574, - 4.712389, 4.712389, 10.995574]
(%i19) map(’reduce, % );
(%o19) [1.5707963, 1.5707963, - 1.5707963, - 1.5707963]
(%i20) uvL_red : makelist ( [ reduce( tuvL[i][2]),

tuvL[i][3]],i,1,length(tuvL))$
(%i21) %, fll;
(%o21) [[0.8, 0.8], [1.3816647, 1.1281164], 931]

To make a reduced phase space plot with our reduced regular motion points, we will only use the last two thirds of the
pairs(u,v) . This will then show the part of the motion which has been “captured” by the driving torque and shows little
influence of the initial conditions.

We use the Maxima functionrest (list, n) which returnslist with its first n elements removed ifn is positive. Thus we
userest (list, num/3) to get the last two thirds.

(%i22) uvL_regular : rest (uvL_red, round(length (uvL_red )/3) )$
(%i23) %, fll;
(%o23) [[0.787059, - 1.2368529], [1.3816647, 1.1281164], 621]
(%i24) plot2d ( [discrete,uvL_regular],[x,-3.2,3.2],[y ,-3.2,3.2],

[style,[lines,2]],
[ylabel," "],[xlabel,"reduced phase space v vs u "] )$

which produces
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Figure 27: Reduced Phase Space Plot of Regular Motion Points
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Poincare Plot

We next construct a Poincare plot of the regular (reduced) phase space points by using a “stroboscopic view” of this phase
space, displaying only phase space points which correspondto times separated by the driving periodT. We select(u,v)
pairs which correspond to intervals of timen* T, wheren = 10, 11, ..., 30 which will give us21 phase space
points for our plot (this is roughly the same as taking the last two thirds of the points).

The time t = 30 * T corresponds tot = 30 * 31* dt = 930* dt which is the time associated with element931 ,
the last element)of uvL_red . The value ofj used to select the last Poincare point is the solution of the equation
1 + 10 * nsteps + j * nsteps = 1 + ncycles * nsteps , which for this case is equivalent to
311 + j * 31 = 931 .

(%i25) solve(311 + j * 31 = 931);
(%o25) [j = 20]
(%i26) pL : makelist (1+10 * nsteps + j * nsteps, j, 0, 20);
(%o26) [311, 342, 373, 404, 435, 466, 497, 528, 559, 590, 621, 652, 683, 714,

745, 776, 807, 838, 869, 900, 931]
(%i27) length(pL);
(%o27) 21
(%i28) poincareL : makelist (uvL_red[i], i, pL)$
(%i29) %,fll;
(%o29) [[0.787059, - 1.2368529], [1.3816647, 1.1281164], 21]
(%i30) plot2d ( [discrete,poincareL],[x,-0.5,2],[y,-1. 5,1.5],

[style,[points,1,1,1 ]],
[ylabel," "],[xlabel," Poincare Section v vs u "] )$

which produces the plot
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Figure 28: Reduced Phase Space Plot of Regular Motion Points

For this regular motion parameters case, the Poincare plot shows the phase space point coming back to one of three
general locations in phase space at times separated by the period T.
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3.4.11 Chaotic Motion Parameters Case.

To exhibit an example of chaotic motion for this system, we use the same initial conditions foru and v , but use the
parameter seta = 1/2, b = 1.15, w = 2/3 .

(%i1) fpprintprec:8$
(%i2) (nsteps : 31, ncycles : 240, a : 1/2, b : 1.15, w : 2/3)$
(%i3) [dudt : v, dvdt : -sin(u) - a * v + b * cos(w * t),

T : float(2 * %pi/w ) ];
v 2 t

(%o3) [v, - - - sin(u) + 1.15 cos(---), 9.424778]
2 3

(%i4) [dt : T/nsteps, tmax : ncycles * T ];
(%o4) [0.304025, 2261.9467]
(%i5) tuvL : rk ([dudt,dvdt],[u,v],[0.8,0.8],[t,0,tmax, dt])$
(%i6) %, fll;
(%o6) [[0, 0.8, 0.8], [2261.9467, 26.374502, 0.937008], 74 41]
(%i7) dt * ( last(%) - 1 );
(%o7) 2261.9467
(%i8) tuL : makelist ([tuvL[i][1],tuvL[i][2]],i,1,lengt h(tuvL))$
(%i9) %, fll;
(%o9) [[0, 0.8], [2261.9467, 26.374502], 7441]
(%i10) tvL : makelist ([tuvL[i][1],tuvL[i][3]],i,1,leng th(tuvL))$
(%i11) %, fll;
(%o11) [[0, 0.8], [2261.9467, 0.937008], 7441]
(%i12) plot2d([ [discrete,tuL], [discrete,tvL]],[x,0,2 000],

[y,-15,30],
[style,[lines,2]],[xlabel,"t"], [ylabel, " "],

[legend, "u","v" ] ,[gnuplot_preamble,"set key bottom;"] )$

which produces a plot ofu(t) andv(t) over0 <= t <= 2000 :
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Figure 29: Angle u(t), and v(t) for Chaotic Parameters Choice
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Phase Space Plot

We next construct anon-reducedphase space plot, but show only the first2000 reduced phase space points.

(%i13) uvL : makelist ([tuvL[i][2],tuvL[i][3]],i,1,leng th(tuvL))$
(%i14) %, fll;
(%o14) [[0.8, 0.8], [26.374502, 0.937008], 7441]
(%i15) uvL_first : rest(uvL, -5441)$
(%i16) %, fll;
(%o16) [[0.8, 0.8], [23.492001, 0.299988], 2000]
(%i17) plot2d ( [discrete,uvL_first],[x,-12,30],[y,-3, 3],

[style,[points,1,1,1]],
[ylabel," "],[xlabel," v vs u "])$

which produces
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Figure 30: non-reduced phase space plot using first 2000 points

If we use thediscretedefaultstyle option lines instead ofpoints ,

(%i18) plot2d ( [discrete,uvL_first],[x,-12,30],[y,-3, 3],
[ylabel," "],[xlabel," v vs u "])$

we get the non-reduced phase space plot drawn with lines between the points:
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Figure 31: non-reduced phase space plot using first 2000 points
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Reduced Phase Space Plot

We now construct the reduced phase space points as in the regular motion case and then omit the first400 .

(%i19) pi : float(%pi);
(%o19) 3.1415927
(%i20) reduce(yy) := pi - mod (pi - yy,2 * pi)$
(%i21) uvL_red : makelist ( [ reduce( first( uvL[i] )),

second( uvL[i] ) ],i,1,length(tuvL))$
(%i22) %, fll;
(%o22) [[0.8, 0.8], [1.2417605, 0.937008], 7441]
(%i23) uvL_cut : rest(uvL_red, 400)$
(%i24) %, fll;
(%o24) [[0.25464, 1.0166641], [1.2417605, 0.937008], 704 1]

We have discarded the first400 reduced phase space points in defininguvL_cut . If we now only plot the first1000 of
the points retained inuvL_cut :

(%i25) uvL_first : rest (uvL_cut, -6041)$
(%i26) %, fll;
(%o26) [[0.25464, 1.0166641], [2.2678603, 0.608686], 100 0]
(%i27) plot2d ( [discrete,uvL_first],[x,-3.5,3.5],[y,- 3,3],

[style,[points,1,1,1]],
[ylabel," "],[xlabel,"reduced phase space v vs u "])$

we get the plot
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Figure 32: 1000 points reduced phase space plot

and the same set of points drawn with the defaultlines option:

(%i28) plot2d ( [discrete,uvL_first],[x,-3.5,3.5],[y,- 3,3],
[ylabel," "],[xlabel,"reduced phase space v vs u "])$
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produces the plot
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Figure 33: 1000 points reduced phase space plot

3000 point phase space plot

We next draw the same reduced phase space plot, but use the first 3000 points ofuvL_cut .

(%i29) uvL_first : rest (uvL_cut, -4041)$
(%i30) %, fll;
(%o30) [[0.25464, 1.0166641], [- 2.2822197, - 0.532184], 3 000]
(%i31) plot2d ( [discrete,uvL_first],[x,-3.5,3.5],[y,- 3,3],

[style,[points,1,1,1]],
[ylabel," "],[xlabel,"reduced phase space v vs u "])$

which produces
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Figure 34: 3000 points reduced phase space plot
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and again, the same set of points drawn with the defaultlines option

(%i32) plot2d ( [discrete,uvL_first],[x,-3.5,3.5],[y,- 3,3],
[ylabel," "],[xlabel,"reduced phase space v vs u "])$

which produces the plot

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

 

reduced phase space v vs u 

Figure 35: 3000 points reduced phase space plot
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Poincare Plot

We now construct the Poincare section plot as before, using all the points available inuvL_red .

(%i33) pL : makelist(1+10 * nsteps + j * nsteps, j, 0, ncycles - 10)$
(%i34) %, fll;
(%o34) [311, 7441, 231]
(%i35) poincareL : makelist(uvL_red[i], i, pL)$
(%i36) %, fll;
(%o36) [[- 2.2070801, 1.3794391], [1.2417605, 0.937008], 231]
(%i37) plot2d ( [discrete,poincareL],[x,-3,3],[y,-4,4] ,

[style,[points,1,1,1]],
[ylabel," "],[xlabel," Poincare Section v vs u "] )$

which produces the plot
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Figure 36: 231 poincare section points
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3.5 Using contrib ode for ODE’s

The syntax ofcontrib odeis the same asode. Let’s first solve the same first order ODE example used in the first sections.

(%i1) de : ’diff(u,t)- u - exp(-t);
du - t

(%o1) -- - u - %e
dt

(%i2) gsoln : ode2(de,u,t);
- 2 t

%e t
(%o2) u = (%c - -------) %e

2
(%i3) contrib_ode(de,u,t);

du - t
(%o3) contrib_ode(-- - u - %e , u, t)

dt
(%i4) load(’contrib_ode);
(%o4) C:/PROGRA˜1/MAXIMA˜3.1/share/maxima/5.18.1/sha re/contrib/diffequations/c\
ontrib_ode.mac
(%i5) contrib_ode(de,u,t);

- 2 t
%e t

(%o5) [u = (%c - -------) %e ]
2

(%i6) ode_check(de, %[1] );
(%o6) 0

We see thatcontrib_ode , with the same syntax asode , returns a list (here with one solution, but in general more than
one solution) rather than simply one answer.

Moreover, the package includes the Maxima functionode checkwhich can be used to confirm the general solution.

Here is a comparison for our second order ODE example.

(%i7) de : ’diff(u,t,2) - 4 * u;
2

d u
(%o7) --- - 4 u

2
dt

(%i8) gsoln : ode2(de,u,t);
2 t - 2 t

(%o8) u = %k1 %e + %k2 %e
(%i9) contrib_ode(de,u,t);

2 t - 2 t
(%o9) [u = %k1 %e + %k2 %e ]
(%i10) ode_check(de, %[1] );
(%o10) 0

Here is an example of an ODE whichode2cannot solve, butcontrib odecan solve.

(%i11) de : ’diff(u,t,2) + ’diff(u,t) + t * u;
2

d u du
(%o11) --- + -- + t u

2 dt
dt

(%i12) ode2(de,u,t);
(%o12) false
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(%i13) gsoln : contrib_ode(de,u,t);
3/2

1 (4 t - 1) - t/2
(%o13) [u = bessel_y(-, ------------) %k2 sqrt(4 t - 1) %e

3 12
3/2

1 (4 t - 1) - t/2
+ bessel_j(-, ------------) %k1 sqrt(4 t - 1) %e ]

3 12
(%i14) ode_check(de, %[1] );
(%o14) 0

This section will probably be augmented in the future with more examples of usingcontrib ode.


