
CECS 528, Exam 2, Spring 2024, Dr. Ebert

Directions: Solve AT MOST SIX problems. Closed Notes but you may use a non-
programmable scientific calculator

1 Unit 2 LO Problems (25 pts each)

LO4. Answer the following.

(a) Provide a definition for both DFTn and DFT−1
n . How is each one used to solve the problem

of multiplying two polynomials? Explain. (15 pts)

Solution. See FFT Lecture Notes.

(b) Compute DFT−1
4 (5, 7,−7, 0) using the IFFT algorithm. Show the solution to each of the

seven subproblem instances and, for each one, clearly represent it using DFT−1 notation
and apply the formula for computing it. Show all work. (10 pts)

Solution.

LO5. For the weighted graph with edges

(a, e, 6), (b, d, 3), (c, d, 2), (c, f, 5), (d, e, 1), (d, f, 4),

Show how the forest of M-Trees changes when processing each edge in Kruskal’s sorted list of
edges. When unioning two trees, use the convention that the root of the union is the root which
has the lower alphabetical order. For example, if two trees, one with root a, the other with
root b, are to be unioned, then the unioned tree should have root a. (25 pts)

Solution.

1

Administrator
Pencil

Administrator
Pencil

LO6. Recall that the greedy algorithm to the Fuel Reloading problem chooses a sequence S =
s1, . . . , sn of stations for which s1 < · · · < sn < d, where si+1 is the furthest station from
si that can be reached from si on a full tank of fuel, and d is the final destination, and can be
reached from sn. Let Sopt be a minimal set of stations, and let k be the least integer for which
sk ̸∈ Sopt. To prove correctness, answer the following questions.

(a) Let s ∈ Sopt be the station in Sopt that comes after sk−1, and is closest to sk−1. Why

must such an s exist? Hint: what contradiction arises if such s did not exist? (10 pts)

Solution. Otherwise, the traveler could reach the final destination from sk−1 without
refueling, which contradicts the algorithm’s calculated need for refueling at sk.

(b) Assuming that different stations have different positions, why must it be the case that
s < sk? Hint: what contradiction arises in case s > sk? (10 pts)

Solution. If s > sk, then s is reachable from sk−1 and is further away from sk−1 than is
sk which implies the algorithm would have selected s over sk, a contradiction.

(c) Define Ŝopt as Sopt − s + sk. From the algorithm, we know that sk can be reached
from sk−1, and, since sk > s, it is still possible to reach stations in Sopt that follow s.
Continuing in this manner, we eventually construct an optimal set of stations Sopt for
which S ⊆ Sopt. Why does this imply that S = Sopt? Hint: what contradiction arises if

S were a proper subset of Sopt? (5 pts)

Solution. Fuel Reloading is an optimization problem for which the goal is to minimize
the number of stations visited. Thus, if S were a proper subset Sopt, then S would be a
better solution, contradicting the assumption that Sopt is optimal.

2

LO7. Answer/Solve the following questions/problems.

(a) The dynamic-programming algorithm that solves the Runaway Traveling Salesperson

optimization problem (Exercise 30 from the Dynamic Programming Lecture) defines a
recurrence for the function mc(i, A). In words, what does mc(i, A) equal? Hint: do not
write the recurrence (see Part b). Note: we call it “Runaway TSP” because the salesperson
does not return to home after visiting each city. (5 pts)

(b) Provide the dynamic-programming recurrence for mc(i, A). (10 pts)

(c) Apply the recurrence from Part b to the graph below. Show all the necessary computations.
Provide the least cost path and give its total cost. (10 pts)

1 2

3 4

46

26

38

20

15

24

Solution. Start with mc(1, {2, 3, 4}) and proceed to compute other mc values as needed.

mc(1, {2, 3, 4}) = min(20 + mc(2, {3, 4}), 46 + mc(3, {2, 4}), 26 + mc(4, {2, 3})).

mc(2, {3, 4}) = min(15 + mc(3, {4}), 38 + mc(4, {3})) = min(15 + 24, 38 + 24) = 39.

mc(3, {2, 4}) = min(15 + mc(2, {4}), 22 + mc(4, {2})) = min(15 + 38, 24 + 38) = 53.

mc(4, {2, 3}) = min(38 + mc(2, {3}), 24 + mc(3, {2})) = min(38 + 15, 24 + 15) = 39.

Therefore,

mc(1, {2, 3, 4}) = min(20 + mc(2, {3, 4}), 46 + mc(3, {2, 4}), 26 + mc(4, {2, 3})) =

min(20 + 39, 46 + 53, 26 + 39) = 59.

This gives the optimal path P = 1, 2, 3, 4.

2 Advanced Problems

A1. Compute the 8th roots of unity and verify that their squares yield the 4th roots of unity. Hint:
cos(π

4
) =

√
2
2
. (25 pts)

Solution.

3

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

A2. Consider the three-coin denomination set S = {1, 10, 25}. Let m(c) denote the minimum
number of coins that are needed to return c cents in change using set S.

(a) Provide a dynamic-programming recurrence for computing m(c). Remember to include
the base case(s). (20 pts)

Solution.

m(c) =

0 if c = 0
m(c− 1) + 1 if 0 < c < 10
min(m(c− 1),m(c− 10)) + 1 if 10 < c < 25
min(m(c− 1),m(c− 10),m(c− 25)) + 1 otherwise

(b) Apply the recurence from part a to the problem of determining the minimum number of
coins needed for c = 33 cents. Include a dynamic-programming array that has solutions
to every subproblem of 33 cents or less. (10 pts)

Solution.
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
m(i) 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8

A3. Provide a recursive implementation of the following function.

Boolean uses_item(int p[][], int n, int M, int weight[], int i);

which takes as inputs the completed 0-1 knapsack dynamic-programming solution matrix p,
the number of items n, the knapsack capacity M , and an item index 1 ≤ i ≤ n, and returns 1
iff, item i was placed in the optimal knapsack (in accordance with matrix p). (25 pts)

Solution.

if(i == n)

return (p[i][M] != p[i-1][M]);

return uses_item(int p[][], int n-1, M-weight[n], i);

A4. Answer the following.

(a) Let G = (V,E, c) be a positive-weighted graph with integer vertices and P = i, . . . , j, . . . , k
is a least-cost simple path from i to k, where i < j < k. Prove that P1 and P2 must both be
least-cost paths, where P1 = i, . . . , j, P2 = j, . . . , k, and P = P1 ◦ P2 is the concatenation
of P1 with P2. Hint: use a proof by contradiction. (10 pts)

Solution. If P ′
1 were a less-costly path from i to j, then we may assume that, except for

j, it does not visit any vertices that are visited by P2 (why?). Thus P ′ = P ′
1 ◦P2 is a path

from i to k that has lesser cost, a contradiction.

(b) Give an example of a maximum-cost simple path P = i, . . . , j, . . . , k from i to k, but for
which neither P1 nor P2 are maximum-cost paths, where P1 = i, . . . , j, P2 = j, . . . , k, and
P = P1 ◦ P2 is the concatenation of P1 with P2. Hint: use a directed graph. (15 pts)

Solution. See the solution to Problem 20 of the Dynamic Programming Lecture. Modify
it so that P2 is also not a maximum-cost paths. Hint: add an edge from c to a.

4

Administrator
Pencil

Administrator
Highlight

Administrator
Pencil

3 Unit 1 LO Problems (0 pts each)

LO1. Solve the following.

a. Compute 280 + 370 mod 5. Show all work.

Solution. 24 ≡ 1 mod 5 and 32 ≡ −1 mod 5 implies

280 ≡ (24)20 ≡ 120 ≡ 1 mod 5

and
370 ≡ (32)35 ≡ (−1)35 ≡ −1 mod 5.

Therefore, 280 + 370 ≡ 1 + (−1) ≡ 0 mod 5.

b. In the Strassen-Solovay test, is a = 4 a witness or accomplice for n = 21? Show work in
computing both the left and right sides of the mod-21 congruence.

Solution. We have 4
21−1

2 = 220. Since 26 ≡ 64 ≡ 1 mod 21, we have

220 ≡ 22 ≡ 4 mod 21.

Also, (
4

21

)
=

(
2

7

)2(
2

3

)2

= 1.

Hence, 4 ̸≡ 1 mod 21, and so 4 is a witness to n = 21 being composite.

LO2. Solve each of the following problems.

a. Use the Master Theorem to determine the growth of T (n) if it satisfies the recurrence
T (n) = 4T (n/2) + nlog2 5 log3 n.

Solution. Since f(n) = nlog2 5 log3 n = Ω(n2+ϵ) for ϵ = log2 5− 2, it follows by Case 3 of
the Master Theorem that T (n) = Θ(nlog2 5 log3 n).

b. Use the substitution method to prove that, if T (n) satisfies

T (n) = 4T (n/2) + 3n,

Then T (n) = Ω(n2 log n). (15 pts)

Solution.

LO3. Solve the following problems.

5

Administrator
Pencil

a. Recall the Randomized Find-Statistic algorithm. For an in input array a of size 128,
and k = 18, suppose a pivot is randomly selected from the indices 0-127. What is the
probability that, after using this pivot for the partitioning step, the next array to consider
will have a size that is no greater than 96? Explain and show work. How many random
pivots would we expect would have to be generated before finding one that that reduces
the array to the desired size (of 96 or fewer elements). Explain.

Solution. If the pivot is chosen from 0-17, then the k = 18 least member will be located
in aright for which |aright| ≥ 111. Also, if the pivot is chosen as 96 or greater, then k = 18

least member will be located in aleft for which |aleft| ≥ 97. Therefore, the only acceptable
pivots range from 17 to 95, and so the probability that the next array will have a size of
96 or less is equal to 79/128, and so the expected number of pivot selections before the
size becomes 96 or less is no more than 128/79 = 1.62.

b. Recall that the Minimum Positive Subsequence Sum (MPSS) problem admits a divide-
and-conquer algorithm that, on input integer array a, requires computing the mpss of any
subarray of a that contains both a[n/2− 1] and a[n/2] (the end of aleft and the beginning
of aright). For

a = 46,−37, 23,−47, 11,−36, 46,−40, 14,−29

provide the two sorted arrays a = LeftSums and b = RightSums from which the minimum
positive sum a[i] + b[j] represents the desired mpss (for the middle), where i in the index
range of a and j is within the index range of b. Also, demonstrate how the minimum
positive sum a[i] + b[j] may be computed via the movement of left and right markers.

Solution.

6

Administrator
Pencil

