Problems

LO3. Solve the following problems.
(a) Recall that, for the Randomized Quicksort Algorithm, $T(n)$ denotes the expected running time of the algorithm when applied to an array a of distinct integers where size $(a)=n$. Provide an equation for $T(n)$ conditioned on the event that the pivot M, selected for the root level of recursion, is such that there are 25 members of a that are less than M. Explain why the right side of the equation must equal $T(n)$. Hint: your answer should include discussion of how to compute the expectation of a sum of random variables.
(b) Consider the following algorithm of Karatsuba called multiply for multiplying two n-bit binary numbers x and y. In what follows, we assume n is even. Let x_{L} and x_{R} be the leftmost $n / 2$ and rightmost $n / 2$ bits of x respectively. Define y_{L} and y_{R} similarly. Let P_{1} be the result of calling multiply on inputs x_{L} and y_{L}, P_{2} be the result of calling multiply on inputs x_{R} and y_{R}, and P_{3} the result of calling multiply on inputs $x_{L}+x_{R}$ and $y_{L}+y_{R}$. Then return the value $P_{1} \times 2^{n}+\left(P_{3}-P_{1}-P_{2}\right) \times 2^{n / 2}+P_{2}$. Apply this algorithm to the numbers $x=27$ and $y=36$. Only show the top level of the recursion (i.e. do not make a recursion tree) and the subproblem solutions that are needed to compute the final product.

LO4. Answer the following.
(a) The FFT algorithm owes its existence to what two properties that are possessed by the nth roots of unity when n is even?
(b) Compute $\mathrm{DFT}_{4}^{-1}(4,-3,1,7)$ using the IFFT algorithm. Show the solution to each of the seven subproblem instances and, for each one, clearly represent it using DFT^{-1} notation and apply the formula for computing it. Show all work.

LO5. For the weighted graph with edges

$$
(a, c, 5),(b, c, 4),(c, e, 6),(c, f, 3),(c, d, 2),(d, f, 1)
$$

Show how the forest of M-Trees changes when processing each edge in Kruskal's sorted list of edges. When unioning two trees, use the convention that the root of the union is the root which has the lower alphabetical order. For example, if two trees, one with root a, the other with root b, are to be unioned, then the unioned tree should have root a.

LO6. Answer the following with regards to a correctness-proof outline for Kruskal's algorithm.
(a) In the correctness proof of Kruskal's algorithm, suppose $T=e_{1}, \ldots, e_{n-1}$ are the edges selected by Kruskal's algorithm (in that order) and $T_{\text {opt }}$ is an mst that has edges e_{1}, \ldots, e_{k-1}, but for which $e_{k} \notin T_{\mathrm{opt}}$. Then $T_{\mathrm{opt}}+e_{k}$ has a cycle C. Explain why C cannot contain any edges that were rejected by Kruskal before the round for which e_{k} was added to the tree.
(b) Explain why the fact that was stated in part a implies that C must have at least one edge e that comes after e_{k} in the Kruskal order.
(c) Prove that $T_{\mathrm{Opt}}-e+e_{k}$ an mst?

LO7. Solve the following problems.
(a) The dynamic-programming algorithm that solves the Longest Common Subsequence (LCS) optimization problem defines a recurrence for the function $\operatorname{lcs}(i, j)$. In words, what does $\operatorname{lcs}(i, j)$ equal? Hint: do not write the recurrence (see Part b).
(b) Provide the dynamic-programming recurrence for $\operatorname{lcs}(i, j)$.
(c) Apply the recurrence from Part b to the words $u=$ aabbab and $v=$ bababa. Show the matrix of subproblem solutions and use it to provide an optimal solution.

