NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION
 ALLOWED. Submit each solution on a separate sheet of paper.

Problem

LO1. Solve the following problems.
(a) Compute the multiplicative inverse of $15 \bmod 38$.
(b) Consider the RSA key set $(N=77=7 \cdot 11, e=7)$. Determine the decryption key d.

LO2. Solve the following problems.
(a) Use the Master Theorem to determine the growth of $T(n)$ if it satisfies the recurrence $T(n)=10 T(n / 3)+n^{\log _{3} 10} \log ^{2} n$. Defend your answer.
(b) Use the substitution method to prove that, if $T(n)$ satisfies

$$
T(n)=8 T(n / 2)+n^{3}
$$

Then $T(n)=\Omega\left(n^{3} \log n\right)$.
LO3. Solve each of the following problems.
(a) Recall that the find_statistic algorithm makes use of Quicksort's partitioning algorithm and uses a pivot that is guaranteed to have at least

$$
3\left(\left\lfloor\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rfloor-2\right) \geq 3\left(\frac{1}{2} \cdot \frac{n}{5}-3\right)=\frac{3 n}{10}-9 \geq n / 4
$$

members of a on both its left and right sides, assuming $n \geq 200$. Rewrite all three inequalities/equalities with updated constants, assuming that the algorithm now uses groups of 9 instead of groups of 5 . Give the rationale for how you decided to replace the 3 on the left side of the very first inequality.
(b) Consider the following algorithm called multiply for multiplying two n-bit binary numbers x and y. In what follows, we assume n is even. Let x_{L} and x_{R} be the leftmost $n / 2$ and rightmost $n / 2$ bits of x respectively. Define y_{L} and y_{R} similarly. Let P_{1} be the result of calling multiply on inputs x_{L} and y_{L}, P_{2} be the result of calling multiply on inputs x_{R} and y_{R}, and P_{3} the result of calling multiply on inputs $x_{L}+x_{R}$ and $y_{L}+y_{R}$. Then return the value $P_{1} \times 2^{n}+\left(P_{3}-P_{1}-P_{2}\right) \times 2^{n / 2}+P_{2}$. Apply this algorithm to the numbers $x=13$ and $y=6$. Only show the top level of the recursion (i.e. do not make a recursion tree).

LO4. Solve each of the following problems.
(a) When performing the alternative algorithm for multiplying two polynomials, evaluating polynomial A at the nth roots of unity is essential for two reasons. Name one of them.
(b) Compute $\mathrm{DFT}_{4}(3,-1,2,-4)$ using the FFT method. Show the solution to each of the subproblem instances (including the original problem instance) that must be solved. In other words, provide a recursion tree with the subproblems and provide the solution to each one.

