NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION ALLOWED. Submit each solution on a separate sheet of paper.

Problem

LO1. Complete the following problems.
(a) Show all the steps needed to compute $\left(\frac{15}{43}\right)$.
(b) For the Strassen-Solovay primality test verify that $a=2$ is an accomplice when $n=13$,
a)

$$
\begin{aligned}
& \text { a) } \begin{array}{l}
\left(\frac{15}{43}\right)=\left(\frac{3}{43}\right)\left(\frac{5}{43}\right)=-\left(\frac{43}{3}\right)\left(\frac{43}{5}\right)=-\left(\frac{1}{3}\right)\left(\frac{3}{5}\right) \\
-\left(\frac{5}{3}\right)=-\left(\frac{2}{3}\right)=1 \text { since } 3 \equiv 3 \bmod 8 . \\
\text { b) } n=13: 2^{\frac{13-1}{2}} \equiv 2^{6} \equiv 2^{2} \cdot 2^{4} \equiv 4.3 \equiv-1 \bmod 13
\end{array} \text { but is witness when } n=15 .
\end{aligned}
$$

$$
\text { Also, }\left(\frac{2}{13}\right)=-1 \text { since } 13 \equiv-3 \text { mod } 80
$$ $\therefore 2$ is an accomplice in support of 13 being prime.

For $n=15$,

$$
2^{\frac{15-1}{2}} \equiv 2^{7} \equiv 2^{3} \cdot 2^{4} \equiv 8 \mathrm{mod} 15
$$

$\left(\frac{2}{15}\right)=1$ since $15 \equiv-1$ nod 8 . But $8 \neq 1$ mol 15 .
Therefore, 2 is a witness to 15 not being prime.

