Greedy Graph Algorithms

Last Updated: October 4th, 2023

1 Review of Graph Terminology

A graph $G=(V, E)$ is a pair of sets V and E, where V is the vertex set and E is the edge set for which each member $e \in E$ is a pair (u, v), where $u, v \in V$ are vertices. Unless otherwise noted, we assume that G is simple, meaning that i) each pair (u, v) appears at most once in E, and ii) G has no loops (i.e. no pairs of the form (u, u) for some $u \in V)$, and iii) each edge is undirected, meaning that (u, v) and (v, u) are identified as the same edge.

The following graph terminology will be used repeatedly throughout the course.

Adjacent $u, v \in G$ are said to be adjacent iff $(u, v) \in E$.
Incident $e=(u, v) \in E$ is said to be incident with both u and v.
Directed and Undirected Graphs G is said to be undirected iff, for all $u, v \in V$, the edges (u, v) and (v, u) are identified as the same edge. On the other hand, in a directed graph (u, v) means that the edge starts at u and ends at v, and one must follow this order when traversing the edge. In other words, in a directed graph (u, v) is a "one-way street". In this case u is referred to as the parent vertex, while b is the child vertex.

Vertex Degree The degree of vertex v in a simple graph, denoted $\operatorname{deg}(v)$, is equal to the number of edges that are incident with v. Handshaking property: the degrees of the vertices of a graph sum to twice the number of edges of the graph.

Weighted Graph G is said to be weighted iff each edge of G has a third component called its weight or cost.

Path A path P in G of length k from v_{0} to v_{k} is a sequence of vertices $P=v_{0}, v_{1}, \ldots, v_{k}$, such that $\left(v_{i}, v_{i+1}\right) \in E$, for all $i=0, \ldots, k-1$. In other words, starting at vertex v_{0} and traversing the k edges $\left(v_{0}, v_{1}\right), \ldots,\left(v_{k-1}, v_{k}\right)$, one can reach vertex v_{k}. Here v_{0} is called the start vertex of P, while v_{k} is called the end vertex.

Simple Path $P=v_{0}, v_{1}, \ldots, v_{k}$ is a called a simple path iff $v_{0}, v_{1}, \ldots, v_{k}$ are all distinct.
Connected Graph G is called connected iff, for every pair of vertices $u, v \in V$ there is a path from u to v in G.

Cycle A path P having length at least three is called a cycle iff its start and end vertices are identical. Note: in the case of directed graphs, we allow for cycles of length 2.

Acyclic Graph G is called acyclic iff it admits no cycles.
Tree Simple graph G is called a tree iff it is connected and has no cycles.
Forest A forest is a collection of trees.
Subgraph $H=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of G iff i) $V^{\prime} \subseteq V$, ii) $E^{\prime} \subseteq E$, and iii) $(u, v) \in E^{\prime}$ implies $u, v \in V^{\prime}$.

The proof of the following Theorem is left as an exercise.
Theorem 1.1. If $T=(V, E)$ is a tree, then

1. T has at least one degree- 1 vertex, and
2. $|E|=n-1$.

Figure 1: Graphical Representation of G

Example 1.2. Let $G=(V, E)$, where

$$
V=\{S D, S B, S F, L A, S J, O A K\}
$$

are cities in California, and

$$
E=\{(S D, L A),(S D, S F),(L A, S B),(L A, S F),(L A, S J),(L A, O A K),(S B, S J)\}
$$

are edges, each of which represents the existence of one or more flights between two cities. Figure 1 shows a graphical representation of G. G has order 6 and size 7 .

Figure 2 shows a simple path of length 4 . Figure 3 shows a cycle of length 3. Let's verify the Handshaking theorem.

$$
\begin{gathered}
\operatorname{deg}(\mathrm{SF})+\operatorname{deg}(\mathrm{LA})+\operatorname{deg}(\mathrm{SD})+\operatorname{deg}(\mathrm{OAK})+\operatorname{deg}(\mathrm{SJ})+\operatorname{deg}(\mathrm{SB})= \\
2+5+2+1+2+2=14=2 \cdot 7=2|E| .
\end{gathered}
$$

Figure 2: Simple path (in red) $P=\mathrm{SF}, \mathrm{SD}, \mathrm{LA}, \mathrm{SJ}, \mathrm{SB}$ of length 4

Figure 3: Cycle (in red) $C=\mathrm{SF}, \mathrm{SD}, \mathrm{LA}, \mathrm{SF}$ of length 3

2 Minimum Spanning Tree Algorithms

Let $G=(V, E)$ be a simple connected graph. Then a spanning tree $T=\left(V, E^{\prime}\right)$ of G is a subgraph of G which is also a tree. Notice that T must include all the vertices of G. Thus, a spanning tree of G represents a minimal set of edges that are needed by G in order to maintain connectivity. Moreover, if G is weighted, then a minimum spanning tree ($\mathbf{m s t}$) of G is a spanning tree whose edge weights sum to a minimum value.

Example 2.1. Consider a problem in which roads are to be built that connect all four cities a, b, c, and d to one another. In other words, after the roads are built, it will be possible to drive from any one city to another. The cost (in millions) of building a road between any two cities is provided in the following table.

cities	a	b	c	d
a	0	30	20	50
b	30	0	50	10
c	20	50	0	75
d	50	10	75	0

Using this table, find a set of roads of minimum cost that will connect the cities.

$$
\operatorname{cost}\left(T_{\text {opt }}\right)=20+30+10=
$$

2.1 Kruskal's Algorithm

In this section we present Kruskal's greedy algorithm for finding an MST in a simple weighted connected graph $G=(V, E)$.

Kruskal's algorithm builds a minimum spanning tree in greedy stages. Assume that $V=\left\{v_{1}, \ldots, v_{n}\right\}$, for some $n \geq 1$. Define forest \mathcal{F} that has n trees T_{1}, \ldots, T_{n}, where T_{i} consists of the single vertex v_{i}. Sort the edges of G in order of increasing weight. Now, following this sorted order, for each edge $e=(u, v)$, if u and v are in the same tree T, then continue to the next edge, since adding e will create a cycle in T. Otherwise, letting T_{u} and T_{v} be the respective trees to which u and v belong, replace T_{u} and T_{v} in \mathcal{F} with the single tree T_{u+v} that consists of the merging of trees T_{u} and T_{v} via the addition of edge e. In other words,

$$
T_{u+v}=\left(V_{u+v}, E_{u+v}\right)=\left(V_{u} \cup V_{v}, E_{u} \cup E_{v} \cup\{e\}\right),
$$

and

$$
\mathcal{F} \leftarrow \mathcal{F}-T_{u}-T_{v}+T_{u+v}
$$

The algorithm terminates when \mathcal{F} consists of a single (minimum spanning) tree.

Example 2.2. Use Kruskal's algorithm to find an mst for the graph $G=(V, E)$, where the weighted edges are given by

$$
\begin{gathered}
E=\{(a, b, 1),(a, c, 3),(b, c, 3),(c, d, 6),(b, e, 4),(c, e, 5),(d, f, 4),(d, g, 4), \\
(e, \underbrace{}_{3}, 5),(f, g, 2),(f, h, 1),(g, h, 2)\} .
\end{gathered}
$$

$$
\cos +(T)=20
$$

2.2 Replacement method

The replacement method is a method for proving correctness of a greedy algorithm and works as follows.

Greedy Solution Let $S=c_{1}, \ldots, c_{n}$ represent the solution produced by a greedy algorithm that we want to show is correct. Note: c_{i} denotes the i th greedy choice, $i=1, \ldots, n$.

Optimal Solution Let $S_{\text {opt }}$ denote the optimal solution.
First Disagreement Let $k \geq 1$ be the least index for which $c_{k} \notin S_{\mathrm{opt}}$, i.e. $c_{1}, \ldots, c_{k-1} \in S_{\mathrm{opt}}$, but not c_{k}.

Replace Transform $S_{\text {Opt }}$ into a new optimal solution $\hat{S}_{\text {Opt }}$ for which $c_{1}, \ldots, c_{k} \in \hat{S}_{\text {Opt }}$. Note: this usually requires replacing something in $S_{\text {opt }}$ with c_{k}.

Continue Continuing in this manner, we eventually arrive at an optimal solution that has all the choices made by the greedy algorithm. Argue that this solution must equal the greedy solution, and hence the greedy solution is optimal.

Example 2.3. An instance of the Task Selection problem is a finite set T of tasks, where each task t has a start time $s(t)$ and finish time $f(t)$ which indicate the interval for which the task should be completed by a single processor. The goal is to find a subset $T_{\text {opt }}$ of T of maximum size whose tasks are pairwise non-overlapping, meaning that no two tasks in $T_{\text {opt }}$ share a common time in which both are being executed. Show the set of tasks that result from the following greedy algorithm. Sort the tasks based on increasing finish time. Add the first task t in the sorted order to the solution set. And let f denote its finish time. Next, add to the solution set the first task t^{\prime} (if it exists) in the order for which $s\left(t^{\prime}\right) \geq f$. Assign $f \leftarrow f\left(t^{\prime}\right)$ and repeat until all tasks in the sorted order have been considered.

Apply the algorithm to the following set of tasks, where each triple in set T represents the id, start time, and finish time.

Example 2.4. Use the Replacement Method to prove the correctness of the algorithm described in the previous example.
To Let $S=t_{1,} \cdots, t_{n}$ demote the solution returned
2. Let Sopt denote an optimal by TSA.
set of tasks
3. Let k be the least index s for which $t_{k} \notin$ Copt.
4. Let $t^{\prime} \in S_{\text {opt }}$ be the task that starts after t_{k-1} and finishes the earliest (among all tasks in Copt). rote: t 'exists since otherwise \mid opt $|=k-1<|S|$ a contracliction.

Note also that i) t^{\prime} must overlap t_{k} and ii) $f\left(t^{\prime}\right) \geq f\left(t_{k}\right)$.

Thus, we can define a new optimal solution

$$
\hat{S}_{o p t}=S_{o p t}+\left\{t_{k}\right\}-\left\{t^{\prime}\right\}
$$

Note that t_{k} does not overlap with any other tasks in copt since they all to the right of t^{\prime}.
5. Contiming in this manner we eventually arrive at an optimal solution Soot for which $S e^{\text {PSopt. }}$
t_{1} 效
$\left.\because t_{k}\right][t] \bar{t}_{k+1}$.
$\left.\cdot t_{n}\right] \vec{t}^{?}$

$$
\text { But Supt } \sin \text { since in o aditionof tasks can be }
$$

Theorem 2.5. When Kruskal's algorithm terminates, then \mathcal{F} consists of a single minimum spanning tree.

Proof Using Replacement Method.

Greedy Solution Let $T=e_{1}, e_{2}, \ldots, e_{n-1}$ be the edges of the spanning tree returned by Kruskal, and written in the order selected by Kruskal. We'll let these edges represent Kruskal's spanning tree T. Note: here n represents the order of problem instance G.

Optimal Solution Let $T_{\text {opt }}$ be an mst of G.
First Disagreement Let $k \geq 1$ be the least index for which $e_{k} \notin T_{\mathrm{opt}}$, i.e. $e_{1}, \ldots, e_{k-1} \in T_{\mathrm{opt}}$, but not e_{k}.

Replace Consider the result of adding e_{k} to $T_{\text {opt }}$ to yield the graph $T_{\text {opt }}+e_{k}$. Then, since $T_{\text {opt }}+e_{k}$ is connected and has n edges, it must have a cycle C containing e_{k}.
Claim. There must be some edge in C that comes after e_{k} in Kruskal's list of sotted edges. Hence, $w(e) \geq w\left(e_{k}\right)$.

Proof of Claim. Suppose no such edge e exists. Then all edges of C must come before e_{k} in Kruskal's list of sorted edges. Moreover, these edges fall into two categories:

1. edges selected by Kruskal (i.e. e_{1}, \ldots, e_{k-1}), and
2. edges rejected by Kruskal.

However, notice that none of the rejected edges can be in C. This is true since $e_{1}, \ldots, e_{k-1} \in$ T_{Qpt}, and so having a rejected edge in T_{Opt} would create a cycle. Therefore, this means that $C \subseteq\left\{e_{1}, \ldots, e_{k-1}, e_{k}\right\}$ which is a contradiction, since $\left\{e_{1}, \ldots, e_{k-1}, e_{k}\right\} \subseteq T$, and T has no cycles. Therefore, such an edge $e \in C$ does exist.
Now consider $\hat{T}_{\mathrm{opt}}=T_{\mathrm{opt}}-e+e_{k}$. This is a spanning tree since it is connected and the removal of e eliminates the cycle C. Finally, since $w(e) \geq w\left(e_{k}\right) \operatorname{cost}\left(\hat{T}_{\text {opt }}\right) \leq \operatorname{cost}\left(T_{\text {opt }}\right)$.
Continue Continuing in this manner, we eventually arrive at an mst that has all of Kruskal's edges. But this tree must equal Kruskal's tree, since any two mst's have the same number of edges.

Theorem 2.6. Kruskal's algorithm can be implemented to yield a running time of $T(m, n)=$ $\Theta(m \log m)$, where $m=|E|$.

Proof. Given connected simple graph $G=(V, E)$, sort the edges of E by increasing order of weight using Mergesort. This requires $\Theta(m \log m)$ steps. The only remaining issue involves checking to see if the vertices of an edge e belong in the same tree. This can be done with the use of the disjoint-set data structure. Moreover, since the algorithm begins with n trees in the forest \mathcal{F} and there are at $\mathrm{O}(m+n)$ disjoint-set operations, by Theorem 2.9 of the Greedy Algorithm Introduction lecture, checking tree membership of edge vertices can be done in $\mathrm{O}\left(n+m \log ^{*} n\right)$ steps. Therefore, the algorithm's running time is dominated by the sorting step to give $T(m, n)=\Theta(m \log m)$.

Example 2.7. For the weighted graph with edges
$\underset{\text { ages }}{\text { Graph Nodes }} \longrightarrow$

$$
(b, d, 5),(a, e, 4),(a, b, 1),(e, c, 3),(b, f, 6),(e, d, 2)
$$

Show how the forest of disjoint-set data structure trees changes when processing each edge in the Kruskal's sorted list of edges. When merging two trees, use the convention that the root of the merged tree should be the one having lower alphabetical order. For example, if two trees, one with root a, the other with root b, are to be merged, then the merged tree should have root a.

Solution.
 Original Forest

(f)

E1. After processing first edge:

(C) (1) (C)
\oplus

E2. After processing second edge:

(6)

E4. After processing fourth edge:

E5. After processing fifth edge:

E6. After processing sixth edge:

2.3 Prim's Algorithm

Prim's algorithm builds a single tree in stages, where a single edge/vertex is added to the current tree at each stage. Given connected and weighted simple graph $G=(V, E)$, the algorithm starts by initializing a tree $T_{1}=(\{v\}, \emptyset)$, where $v \in V$ is a vertex in V that is used to start the tree.

Now suppose tree T_{i} having i vertices has been constructed, for some $1 \leq i \leq n$. If $i=n$, then the algorithm terminates, and T_{n} is the desired spanning tree. Otherwise, let T_{i+1} be the result of adding to T_{i} a single edge/vertex $e=(u, w)$ that satisfies the following.

1. e is incident with one vertex in T_{i} and one vertex not in T_{i}.
2. Of all edges that satisfy 1., e has the least weight.

Example 2.8. Demonstrate Prim's algorithm on the graph $G=(V, E)$, where the weighted edges are given by

Priorities after Round 4:

Theorem 2.9. Prim's algorithm returns a minimum spanning tree for input $G=(V, E)$.

The proof of correctness of Prim's algorithm is very similar to that of Kruskal's algorithm, and his left as an exercise. Like all exercises in these lectures, the reader should make an honest attempt to construct a proof before viewing the one provided in the solutions.

Prim's algorithm can be efficiently implemented with the help of a binary min-heap. The first step is to build a binary min-heap whose elements are the n vertices. A vertex is in the heap iff it has yet to be added to the tree under construction. Moreover, the priority of a vertex v in the heap is defined as the least weight of any edge $e=(u, v)$, where u is a vertex in the tree. In this case, u is called the parent of v, and is denoted as $p(v)$. The current parent of each vertex can be stored in an array. Since the tree is initially empty, the priority of each vertex is initialized to ∞ and the parent of each vertex is undefined.

Now repeat the following until the heap is empty. Pop the heap to obtain the vertex u that has a minimum priority. Add u to the tree. Moreover, if $p(u)$ is defined, then add edge $(p(u), u)$ to the tree. Finally, for each vertex v still in the heap for which $e=(u, v)$ is an edge of G, if w_{e} is less than the current priority of v, then set the priority of v to w_{e} and set $p(v)$ to u.

The running time of the above implementation is determined by the following facts about binary heaps.

1. Building the heap can be performed in $\Theta(n)$ steps.
2. Popping a vertex from the heap requires $\mathrm{O}(\log n)$ steps.
3. When the priority of a vertex is reduced, the heap can be adjusted in $\mathrm{O}(\log n)$ steps.
4. The number of vertex-priority reductions is bounded by the number $m=|E|$, since each reduction is caused by an edge, and each edge $e=(u, v)$ can contribute to at most one reduction (namely, that of v 's priority) when u is popped from the heap.

Putting the above facts together, we see that Prim's algorithm has a running time of $\mathrm{O}(n+n \log n+$ $m \log n)=\mathrm{O}(m \log n)$.

Example 2.10. For the heap H used in the implementation of Prim's algorithm, provide a plausible state for H once the size of Prim's tree reaches four in Example 2.8, and any increase_priority operations have been executed. Demonstrate the pop and increase_priority operations (if necessary) that occur as the result of adding the 5th vertex to Prim's tree.

3 Dijkstra's Algorithm

Let $G=(V, E)$ be a weighted graph whose edge weights are all nonnegative. Then the cost of a path P in G, denoted $\operatorname{cost}(P)$, is defined as the sum of the weights of all edges in P. Moreover, given $u, v \in V$, the distance from u to v in G, denoted $d(u, v)$, is defined as the minimum cost of a path from u to v. In case there is no path from u to v in G, then $d(u, v)=\infty$.

Dijkstra's algorithm is used to find the distances from a single source vertex $s \in V$ to every other vertex in V. The description of the algorithm is almost identical to that of Prim's algorithm. In what follows we assume that there is at least one path from s to each of the other $n-1$ vertices in V. Like Prim's algorithm, the algorithm builds a single Dijkstra distance tree (DDT) in rounds $1,2, \ldots, n$, where a single edge/vertex is added to the current tree at each round. We let DDT_{i} denote the current DDT after round $i=1, \ldots, n$. To begin, $\mathrm{DDT}_{0}=\emptyset$ denotes the empty tree and DDT_{1} consists of the source vertex s.

Now suppose DDT_{i} has been defined. A vertex not in DDT_{i} is called external. An i-neighboring path from s to an external vertex v is any path from s to v that uses exactly one edge that is not in DDT_{i}. For each external vertex, let $d_{i}(s, v)$ denote the \imath-neighboring distance from s to v, i.e. the minimum cost of any i-neighboring path from s to v. We set $d_{i}(s, v)=\infty$ in case no such path exists (in this case we say that v is not an i-neighbor of s). Then DDT_{i+1} is obtained by adding the vertex v^{*} to DDT_{i} for which $d_{i}\left(s, v^{*}\right)$ is minimum among all possible external vertices. We also add to DDT_{i+1} the final edge e in the minimum-cost i-neighboring path from s to v^{*}. that achieves this minimum i-neighboring distance. Notice that e joins a vertex in DDT_{i} to v^{*}.

Then the final DDT is $\mathrm{DDT}=\mathrm{DDT}_{n}$.

Example 3.1. Demonstrate Dijkstra's algorithm on the directed weighted graph with the following edges.

$$
(a, b, 3),(a, c, 1),(a, e, 7),(a, f, 6),(b, f, 4),(b, g, 3),(c, b, 1),(c, e, 7),(c, d, 5),(c, g, 10),(d, g, 1), \cdots \sqrt{r}
$$

$$
(d, h, 4),(e, f, 1),(f, g, 3),(g, h, 1)
$$

The heap implementation of Prim's algorithm can also be used for Dijkstra's algorithm, except now the priority of a vertex v is the minimum of $d(s, u)+w_{e}$, where $e=(u, v)$ is an edge that is incident with a vertex u in the tree. Also, the priority of s is initialized to zero.

Example 3.2. For the heap H used in the implementation of Dijkstra's algorithm in Example 3.1, provide a plausible state for H once the size of Dijkstra's tree reaches three, and any increase_priority operations have been executed. Demonstrate the pop and increase_priority operations (if necessary) that occur as the result of adding the 4th vertex to Dijkstra's tree.

The following theorem establishes the correctness of Dijkstra's algorithm.
Theorem 3.3. . Let $d_{i}\left(s, v^{*}\right)$ be the minimum i-neighboring distance among all vertices that are external to DDT_{i}. Then

$$
V^{*} \text { is added to DDJ at rounce it } 1
$$

Proof of Theorem 3.3. Let P be the i-neighboring path from s to v^{*} for which $\operatorname{cost}(P)=d_{i}\left(s, v^{*}\right)$. Let R be any other path from s to v^{*}. Then

$$
R=s, \ldots, u, v, \ldots, v^{*}
$$

where $s, \ldots, u \in \mathrm{DDT}_{i}$, and $v \notin \mathrm{DDT}_{i}$. In other words, v is the first vertex reached by R that is not in DDT_{i}. Vertex v must exist since $v^{*} \notin \mathrm{DDT}_{i}$. Thus $Q=s, \ldots, u, v$ s an i-neighboring path and, since P has the minimum cost of all such paths and Q is a subpath of R, we have

$$
\operatorname{cost}(R) \geq \operatorname{cost}(Q) \geq \operatorname{cost}(P)
$$

Therefore, P is the minimum-cost path from s to v^{*}, i.e.,

Exercises

1. Prove that a tree T (i.e. undirected and acyclic graph) of size two or more must always have a degree-one vertex. Hint: consider the longest simple path in T. What can you say about its start and end vertices and why?
2. Prove that a tree of size n has exactly $n-1$ edges.
3. Prove that if a graph of order n is connected and has $n-1$ edges, then it must be acyclic (and hence is a tree).
4. Draw the weighted graph whose vertices are a-e, and whose edges-weights are given by

$$
\begin{gathered}
\{(a, b, 2),(a, c, 6),(a, e, 5),(a, d, 1),(b, c, 9),(b, d, 3),(b, e, 7),(c, d, 5), \\
(c, e, 4),(d, e, 8)\}
\end{gathered}
$$

Informally perform Kruskal's algorithm to obtain a minimum spanning tree for G. Label each edge to indicate its order in the Kruskal sorted order. that it was added to the forest. Break ties be giving precedence to the edge that comes first in the above list of edges.
5. Repeat the steps of Example 2.7 but using the graph whose edge set is

$$
E=\{(f, e, 5),(a, e, 4),(a, f, 1),(b, d, 3),(c, e, 6),(d, e, 2)\} .
$$

Show how the membership trees change when processing each edge in Kruskal's list of sorted edges. When unioning two trees, use the convention that the root of the resulting tree should be the one having lower alphabetical order. For example, if two trees, one with root a, the other with root b, are to be unioned, then the resulting tree should have root a.
6. Repeat Exercise 4 using Prim's algorithm. Assume that vertex e is the first vertex added to the mst. Annotate each edge with the order in which it is added to the mst.
7. For the previous exercise. Show the state of the binary heap just before the next vertex is popped. Label each node with the vertex it represents and its priority. Let the initial heap have e as its root.
8. Does Prim's and Kruskal's algorithm work if negative weights are allowed? Explain.
9. Explain how Prim's and/or Kruskal's algorithm can be modified to find a maximum spanning tree.
10. Draw the weighted directed graph whose vertices are a-g, and whose edges-weights are given by

$$
\begin{gathered}
\{(a, b, 2),(b, g, 1),(g, e, 1),(b, e, 3),(b, c, 2),(a, c, 5),(c, e, 2),(c, d, 7),(e, d, 3) \\
(e, f, 8),(d, f, 1)\}
\end{gathered}
$$

Perform Dijkstra's algorithm to determine the Dijkstra spanning tree that is rooted at source vertex a. Draw a table that indicates the distance estimates of each vertex in each of the rounds. Circle the vertex that is selected in each round.
11. Let G be a graph with vertices $0,1, \ldots, n-1$, and let parent be an array, where parent $[i]$ denotes the parent of i for some shortest path from vertex 0 to vertex i. Assume parent $[0]=-1$; meaning that 0 has no parent. Provide a recursive implementation of the function
void print_optimal_path(int i, int parent[])
that prints from left to right the optimal path from vertex 0 to vertex i. You may assume access to a print() function that is able to print strings, integers, characters, etc.. For example,
print i
print "Hello"
print ','
are all legal uses of print.
12. Prove the correctness of Prim's algorithm. Hint: use the proof of correctness for Kruskal's algorithm as a guide.
13. Prove that the Fuel Reloading greedy algorithm (See Exercise 1 of "Greedy Algorithms Overview" Lecture) always returns a minimum set of stations. Hint: use a replacement-type argument similar to that used in proving correctness of Kruskal's algorithm.
14. Prove that the Task Selection algorithm (See Exercise 2 of "Greedy Algorithms Overview" Lecture) is correct, meaning that it always returns a maximum set of non-overlapping tasks. Hint: this is essentially Example 2.4.
15. Prove that the FK algorithm (See Exercise 4 of "Greedy Algorithms Overview" Lecture) always returns a maximum container profit.
16. Prove that the Unit Task Scheduling greedy algorithm (See Exercise 7 of "Greedy Algorithms Overview" Lecture) always attains the maximum profit. Hint: use the Replacement Method.

Exercise Solutions

1. Consider the longest simple path $P=v_{0}, v_{1}, \ldots, v_{k}$ in the tree. Then both v_{0} and v_{k} are degree- 1 vertices. For example, suppose there was another vertex u adjacent to v_{0}, other than v_{1}. Then if $u \notin P$, then $P^{\prime}=u, P$ is a longer simple path than P which contradicts the fact that P is the longest simple path. On the other hand, if $u \in P$, say $u=v_{i}$ for some $i>1$, then $P^{\prime}=u, v_{0}, v_{1}, \ldots, v_{i}=u$ is a path of length at least three that begins and ends at u. In other words, P^{\prime} is a cycle, which contradicts the fact that the underlying graph is a tree, and hence acyclic.
2. Use the previous problem and mathematical induction. For the inductive step, assume trees of size n have $n-1$ edges. Let \mathcal{T} be a tree of size $n+1$. Show that \mathcal{T} has n edges. By the previous problem, one of its vertices has degree 1. Remove this vertex and the edge incident with it to obtain a tree of size n. By the inductive assumption, the modified tree has $n-1$ edges. Hence \mathcal{T} must have n edges.
3. Use induction.

Basis step If G has order $n=1$ and $1-1=0$ edges, then G is clearly acyclic.
Inductive step Assume that all connected graphs of order $n-1$ and size $n-2$ are acyclic. Let $G=(V, E)$ be a connected graph of order n, and size $n-1$. Using summation notation, the Handshaking property states that

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E| .
$$

This theorem implies G must have a degree- 1 vertex u. Otherwise,

$$
\sum_{v \in V} \operatorname{deg}(v) \geq 2 n>2|E|=2(n-1)
$$

Thus, removing u from V and removing the edge incident with u from E yields a connected graph G^{\prime} of order $n-1$ and size $n-2$. By the inductive assumption, G^{\prime} is acyclic. Therefore, since no cycle can include vertex u, G is also acyclic.
4. Edges added: $(a, d, 1),(a, b, 2),(c, e, 4),(a, e, 5)$ for a total cost of 12 .
5. The final union-find tree is shown below.

6. Edges added: $(c, e, 4),(c, d, 5),(a, d, 1),(a, b, 2)$ for a total cost of 12 .
7. The heap states are shown below. Note: the next heap is obtained from the previous heap by i) popping the top vertex u from the heap, followed by ii) performing a succession of priority reductions for each vertex v in the heap for which the edge (u, v, c) has a cost c that less than the current priority of v. In the case that two or more vertices have their priorities reduced, assume the reductions (followed by a percolate-up operation) are performed in alphabetical order.

8. Add a sufficiently large integer J to each edge weight so that the weights will be all nonnegative. Then perform the algorithm, and subtract J from each mst edge weight.
9. For Kruskal's algorithm, sort the edges by decreasing edge weight. For Prim's algorithm, use a max-heap instead of a min-heap. Verify that these changes can be successfully adopted in each of the correctness proofs.
10. Edges added in the following order: $(a, b, 2),(b, g, 1),(b, c, 2),(g, e, 1),(e, d, 3),(d, f, 1) \cdot d(a, a)=$ $0, d(a, b)=2, d(a, g)=3, d(a, c)=4, d(a, e)=4, d(a, d)=7, d(a, f)=8$.
11. void print_optimal_path(int i, int parent[])
\{

```
    if(i == 0)
```

print 0
print_optimal_path(parent[i], parent);
print '، '’;
print i;
\}
12. Let T be the tree returned by Prim's Algorithm on input $G=(V, E)$, and assume that $e_{1}, e_{2}, \ldots, e_{n-1}$ are the edges of T in the order in which they were added. T is a spanning tree (why?), and we must prove it is an mst. Let $T_{\text {opt }}$ be an mst for G that contains edges e_{1}, \ldots, e_{k-1}, but does not contain e_{k}, for some $1 \leq k \leq n-1$. We show how to transform $T_{\text {opt }}$ into an mst $T_{\text {opt2 }}$ that contains e_{1}, \ldots, e_{k}.
Let T_{k-1} denote the tree that consists of edges e_{1}, \ldots, e_{k-1}; in other words, the tree that has been constructed after stage $k-1$ of Prim's algorithm. Consider the result of adding e_{k} to $T_{\text {opt }}$ to yield the new graph $T_{\text {opt }}+e_{k}$. Then, since $T_{\text {Opt }}+e_{k}$ is connected and has n edges, $T_{\mathrm{opt}}+e_{k}$ is not a tree, and thus must have a cycle C containing e_{k}. Now since e_{k} is selected at stage k of the algorithm, e_{k} must be incident with exactly one vertex of T_{k-1}. Hence, cycle C must enter T_{k-1} via e_{k}, and exit T_{k-1} via some other edge e that is not in T_{k-1}, but is incident with exactly one vertex of T_{k-1}. Thus, e was a candidate to be chosen at stage k, but was passed over in favor of e_{k}. Hence, $w_{e_{k}} \leq w_{e}$.
Now define $T_{\mathrm{opt} 2}$ to be the tree $T_{\mathrm{opt}}+e_{k}-e$. Then $T_{\mathrm{opt} 2}$ has $n-1$ edges and remains connected, since any path in $T_{\text {opt }}$ that traverses e can alternately traverse through the remaining edges of C, which are still in $T_{\mathrm{opt} 2}$. Thus, $T_{\mathrm{opt} 2}$ is a tree and it is an mst since e was replaced with e_{k} which does not exceed e in weight. Notice that T_{Opt} agrees with T in the first k edges selected for T in Prim's Algorithm, where as $T_{\text {opt }}$ only agrees with T up to the first $k-1$ selected edges. Therefore, by repeating the above transformation a finite number of times, we will eventually construct an mst that is identical with T, proving that T is indeed an mst.
13. Let $S=s_{1}, \ldots, s_{m}$ be the set of stations returned by the algorithm (in the order in which they are visited), and $S_{\text {opt }}$ be an optimal set of stations. Let s_{k} be the first station of S that is not in S_{opt}. In other words, S_{Opt} contains stations s_{1}, \ldots, s_{k-1}, but not s_{k}. Since F is more than d units from s_{k-1} (why ?), there must exits some $s \in S_{\text {Opt }}$ for which $s>s_{k-1}$. Let s be such a station, and for which $\left|s-s_{k-1}\right|$ is a minimum. Then we must have $s_{k-1}<s<s_{k}$, since the algorithm chooses s_{k} because it is the furthest away from s_{k-1} and within d units of s_{k-1}. Now let $S_{\mathrm{Opt} 2}=S_{\mathrm{opt}}+s_{k}-s$. Notice that $S_{\mathrm{Opt} 2}$ contains the optimal number of stations. Moreover, notice that, when re-fueling at s_{k} instead of s, the next station in $S_{\text {opt }}$ (and hence in $S_{\mathrm{opt} 2}$) can be reached from s_{k}, since s_{k} is closer to this station than s. Thus, $S_{\text {opt2 }}$ is a valid set of stations, meaning that it is possible to re-fuel at these stations without running out of fuel. By repeating the above argument we are eventually led to an optimal set of stations that contain all the stations of S. Therefore, S is an optimal set of stations, and the algorithm is correct.
14. Assume each task t has a positive duration; i.e., $f(t)-s(t)>0$. Let t_{1}, \ldots, t_{n} be the tasks selected by TSA, where the tasks are in the order in which they were selected (i.e. increasing
start times). Let $T_{\text {Opt }}$ be a maximum set of non-overlapping tasks. Let k be the least integer for which $t_{k} \notin T_{\mathrm{Opt}}$. Thus $t_{1}, \ldots, t_{k-1} \in T_{\mathrm{Opt}}$.
Claim: t_{1}, \ldots, t_{k-1} are the only tasks in $T_{\text {opt }}$ that start at or before t_{k-1}. Suppose, by way of contradiction, that there is a task t in $T_{\text {Opt }}$ that starts at or before t_{k-1}, and $t \neq t_{i}$, $i=1, \ldots, k-1$. Since t does not overlap with any of these t_{i}, either t is executed before t_{1} starts, in between two tasks t_{i} and t_{i+1}, where $1 \leq i<k-1$. In the former case, TSA would have selected t instead of t_{1} since $f(t)<f\left(t_{1}\right)$. In the latter case, TSA would have selected t instead of t_{i+1}, since both start after t_{i} finishes, but $f(t)<f\left(t_{i+1}\right)$. This proves the claim.
Hence, the first $k-1$ tasks (in order of start times) in $T_{\text {opt }}$ are identical to the first $k-1$ tasks selected by TSA. Now let t be the k th task in $T_{\text {opt }}$. Since TSA selected t_{k} instead of t as the k th task to add to the output set, it follows that $f\left(t_{k}\right) \leq f(t)$. Moreover, since both tasks begin after t_{k-1} finishes, the set $T_{\mathrm{opt} 2}-t+t_{k}$ is a non-overlapping set of tasks (since t_{k} finishes before t, and starts after t_{k-1} finishes) with the same size as $T_{\text {opt }}$. Hence, $T_{\text {opt2 }}$ is also optimal, and agrees with the TSA output in the first k tasks.
By repeating the above argument we are eventually led to an optimal set of tasks whose first n tasks coincide with those returned by TSA. Moreover, this optimal set could not contain any other tasks. For example, if it contained an additional task t, then t must start after t_{n} finishes. But then the algorithm would have added t (or an alternate task that started after the finish of t_{n}) to the output, and would have produced an output of size at least $n+1$. Therefore, there is an optimal set of tasks that is equal to the output set of TSA, meaning that TSA is a correct algorithm.
15. Let $\left(g_{1}, w_{1}\right), \ldots,\left(g_{n}, w_{n}\right)$ represent the ordering of the goods by FKA, where each w_{i} represents the amount of g_{i} that was added to the knapsack by FKA. Let $C_{\text {opt }}$ be an optimal container, and let $\left(g_{k}, w_{k}\right)$ be the first pair in the ordering for which w_{k} is not the amount of g_{k} that appears in C_{Opt}. Thus, we know that C_{opt} has exactly w_{i} units of g_{i}, for all $i=1, \ldots, k-$ 1. As for g_{k}, we must have $w_{k}>0$. Otherwise, FKA filled the knapsack to capacity with $\left(g_{1}, w_{1}\right), \ldots,\left(g_{k-1}, w_{k-1}\right)$, which means that $C_{\text {Opt }}$ could only assign 0 units of capacity for g_{k}, which implies $C_{\text {opt }}$ agrees with FKA up to k, a contradiction. Moreover, it must be the case that $C_{\text {opt }}$ allocates weight w for g_{k}, where $w<w_{k}$. This is true since FKA either included all of g_{k} in the knapsack, or enough of g_{k} to fill the knapsack. Thus, $C_{\text {opt }}$ can allocate no more of g_{k} than that which was allocated by FKA. Now consider the difference $w_{k}-w$. This capacity must be filled in $C_{\text {opt }}$ by other goods, since $C_{\text {opt }}$ is an optimal container. Without loss of generality, assume that there is a single good $g_{l}, l>k$, for which C_{opt} allocates at least $w_{k}-w$ units for g_{l}. Then the total profit being earned by these weight units is $d\left(g_{l}\right)\left(w_{k}-w\right)$. But, since $l>k, d\left(g_{l}\right) \leq d\left(g_{k}\right)$, which implies

$$
d\left(g_{l}\right)\left(w_{k}-w\right) \leq d\left(g_{k}\right)\left(w_{k}-w\right)
$$

Now let $C_{\mathrm{opt} 2}$ be the container that is identical with C_{opt}, but with $w_{k}-w$ units of g_{l} replaced with $w_{k}-w$ units of g_{k}. Then the above inequality implies that $C_{\mathrm{opt} 2}$ must also be optimal, and agrees with the FKA container on the amount of each of the first k placed goods.
By repeating the above argument, we are eventually led to an optimal container that agrees with the FKA container on the amount to be placed for each of the n goods. In other words, FKA produces an optimal container.
16. Let $\left(a_{1}, t_{1}\right), \ldots,\left(a_{m}, t_{m}\right)$ represent the tasks that were selected by the algorithm for scheduling, where a_{i} is the task, and t_{i} is the time that it is scheduled to be completed, $i=1, \ldots, m$.

Moreover, assume that these tasks are ordered in the same order for which they appear in the sorted order. Let $S_{\text {opt }}$ be an optimal schedule which also consists of task-schedule-time pairs. Let k be the first integer for which $\left(a_{1}, t_{1}\right), \ldots,\left(a_{k-1}, t_{k-1}\right)$ are in $S_{\text {opt }}$, but $\left(a_{k}, t_{k}\right) \notin S_{\text {opt. }}$. There are two cases to consider: either a_{k} does not appear in $S_{\text {opt }}$, or it does appear, but with a different schedule time.

First assume a_{k} does not appear in $S_{\text {opt }}$. Let a be a task that is scheduled in $S_{\text {opt }}$ that is different from $a_{i}, i=1, \ldots, k-1$, and is scheduled at time d_{k}. We now a must exist, since otherwise $\left(a_{k}, d_{k}\right)$ could be added to $S_{\text {opt }}$ to obtain a more profitable schedule. Now if $p(a)>p\left(a_{k}\right)$, then a comes before a_{k} in the sorted order. But since $a \neq a_{i}$, for all $i=1, \ldots, k-1$, it follows that it is impossible to schedule a together with each of a_{1}, \ldots, a_{k-1} (otherwise the algorithm would have done so), which is a contradiction, since $S_{\text {opt }}$ schedules all of these tasks, and schedules a_{1}, \ldots, a_{k-1} at the same times that the algorithm does. Hence, we must have $p(a) \leq p\left(a_{k}\right)$. Now define $S_{\mathrm{opt} 2}=S_{\mathrm{opt}}-\left(a, d_{k}\right)+\left(a_{k}, d_{k}\right)$. Then $S_{\mathrm{opt} 2}$ is an optimal schedule that agrees with the algorithm schedule up to the first k tasks.
Now assume a_{k} appears in S_{opt}, but is scheduled at a different time $t \neq t_{k}$. First notice that t cannot exceed t_{k}, since the algorithm chooses the first unoccupied time that is closest to a task's deadline. Thus, every time between $t_{k}+1$ and d_{k} (inclusive) must already be occupied by a task from a_{1}, \ldots, a_{k-1},
and hence these times are not available for a_{k} in $S_{\text {opt }}$. Thus, $t<t_{k}$. Now if t_{k} is unused by S_{opt}, then let $S_{\mathrm{opt} 2}=S_{\mathrm{opt}}-\left(a_{k}, t\right)+\left(a_{k}, t_{k}\right)$. On the other hand, if t_{k} is used by some task a, then let

$$
S_{\mathrm{opt} 2}=S_{\mathrm{opt}}-\left(a_{k}, t\right)-\left(a, t_{k}\right)+\left(a_{k}, t_{k}\right)+(a, t)
$$

In both cases $S_{\text {opt } 2}$ is an optimal schedule that agrees with the algorithm schedule up to the first k tasks.

By repeating the above argument, we are eventually led to an optimal schedule that entirely agrees with the algorithm schedule. In other words, the algorithm produces an optimal schedule.

