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1 Introduction

Definition 1.1. TheComputational complexity of a computational problem refers to the minimum
amount of resources (e.g. execution steps or memory) needed to solve an instance of the problem in
relation to its size.

In other words, given problem A, we seek functions s(n) and t(n) such that, if A is an algorithm that
solves A, then A will require Ω(s(n)) amount of memory and Ω(t(n)) number of steps to solve an
instance of A of size n, where n is the (for simplicity, we’re assuming only one) size parameter for A.

In this chapter we focus almost entirely on decision problems. One reason for this is that the vast
majority of problems that are of interest to both computing practitioners and complexity theorists
are either decision or optimization problems. And we witnessed in Chapter 2 how an optimization
problem can be readily translated into a decision problem by introducing a nonnegative integer k that
represents a threshold for which it must be decided if the property that is being optimized for the
problem instance can achieve the given threshold. For example, an instance of optimization problem
Max Clique is a simple graph G, and the problem is to find the the largest clique in G. On the other
hand, an instance of decision problem Clique is a pair (G, k) and the problem is to decide if G has
a clique of size k. Notice that an algorithm for solving Max Clique immediately yields an algorithm
for solving Clique (why?). Furthermore, if there is an algorithm for solving Clique in O(t(n)) steps,
then it can be shown that there is also one for solving Max Clique in O(log(n)t(n)) steps.
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2 Problem Size and Size Parameters

Definition 2.1. Given a decision problem A and an instance x of A, |x| denotes the size of x and
equals the number of bits needed to binary-encode x. The notation |x| is often useful when speaking
abstractly about a generic decision problem, and an instance x of that problem.

Definition 2.2. Given a decision problem A, a size parameter for A is a parameter that may be
used to (approximately) represent the size of an instance of A. Given an algorithm A that decides A,
its size parameters allow one to describe the number of steps (and/or amount of memory) required
by A as a function of the size parameters.
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Example 2.3. The following are some examples of problems, their size parameters, and examples
of how those size parameters are used.

Clique 1. Instance: (G = (V,E), k)

2. Size parameters: m = |E|, n = |V |
3. Example: verifying that some k vertices form a clique can be done in O(n2) steps.

Subset Sum 1. Instance: (S, t)

2. Size parameters: n = |S|, b is the number of bits needed to write t (we assume that t ≥ s,
for all s ∈ S.

3. Example: verifying that a subset of S sums to t can be done in O(nb) steps.

3SAT 1. Instance: C
2. Size parameters: m = |C|, n = number of variables of C.
3. Example: verifying that an assignment α satisfies C can be done in O(m) steps.

Prime 1. Instance: n

2. Size parameters: b is the number of bits needed to write n in binary. Note that b =
⌊log n⌋+ 1.

3. Example: there is an algorithm that can decide Prime using O(b6) steps.

3



3 The Complexity Class P

Definition 3.1. A complexity class represents a set of decision problems, each of which can be
decided by an algorithm that has one or more constraints placed on the resources that it may use
when deciding the problem.

Definition 3.2. Decision problem A is a member of complexity class P if there is an algorithm that
decides A in a polynomial number of steps with respect to the size parameters of A.

Complexity class P is considered robust in the sense that its members tend to remain the same
from one model of computation to the next (granted, some models of computation are inherently
inefficient, and are not appropriate for use in complexity theory).
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Example 3.3. Here is a description of some important decision problems that are members of P,
some of which required an algorithmic breakthrough before acquiring membership.

Distance between Graph Vertices Given weighted graph G = (V,E,w), vertices a, b ∈ V , and
integer k ≥ 0, is it true that the distance from a to b does not exceed k? Dijkstra’s algorithm
solves this problem in O(m log n) steps.

Primality Test Given natural number n ≥ 2 is n prime? (see “PRIMES is in P”, Annals of
Mathematics, Pages 781-793 from Volume 160 (2004), Issue 2 by Manindra Agrawal, Neeraj
Kayal, Nitin Saxena). The algorithm requires O(log6 n) steps.

Linear Optimization Given i) function f(x) = cx, for some 1 × n-dimensional constant matrix c
and n× 1 real-valued matrix x, ii) constant k ∈ R, iii) m×n constant matrix A, and iv) m× 1
constant matrix b, is it true that there is an x for which

f(x) = cx ≤ k,

subject to
Ax ≥ b?

Karmarkar’s algorithm solves this problem in O(n3.5L2 · logL · log(logL)) steps, where n is
the number of problem variables, and L is the number of bits needed to encode an problem
instance.

Maximum Flow Given directed network G = (V,E, c, s, t) and integer k ≥ 0, is there a flow from
s to t of size at least k? The Ford Fulkerson algorithm solves this problem in O(n3) steps.

Perfect Matching Given bipartite graph G = (U, V,E), where |U | = |V | = n, does G have a
perfect matching, i.e. a set of edgesM = {e1, . . . , en} ⊆ E such that any two edges ei, ej ∈ M
neither share a vertex in U , nor share a vertex in V ? The Ford Fulkerson algorithm solves this
problem in O(n2 +mn) steps.

2SAT Given a set of Boolean formulas C, where each formula (called a clause) has the form a ∨ b,
where a and b are literals, is there a truth assignment for the variables so that each clause has
at least one literal that is assigned true? This problem can be solved in O(m+ n) steps.

Bitonic Traveling Salesperson given n cities c1, . . . , cn, where ci has grid coordinates (xi, yi), and
a cost matrix C, where entry Cij denotes the cost of traveling from city i to city j, determine
a left-to-right followed by right-to-left Hamilton-cycle tour of all the cities that minimizes the
total traveling cost. In other words, the tour starts at the leftmost city, proceeds from left to
right visiting a subset of the cities (including the rightmost city), and then concludes from right
to left visiting the remaining cities. The problem can be solved in O(n log2 n) steps.
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Figure 1: Solving an NP problem can be like finding a needle in a haystack.

4 The Complexity Class NP

Definition 4.1. Decision problem A is a member of complexity class NP if there is

1. a set Cert, called the certificate set,

2. a decision algorithm V, called the verifier, which has the following properties:

(a) the inputs to V are i) an instance x of A and ii) a certificate c ∈ Cert

(b) the output is 1 iff c is a valid certificate for x, meaning that c proves that x is a positive
instance of A

(c) V requires a polynomial number of steps with respect to the size parameters of A.

Although, for any given instance x of A and any certificate c ∈ Cert, the verifier only requires a
polynomial number of steps, what makes some NP problems very difficult to solve is that there are
usually an exponential number of certificates, and finding a valid one is like finding a “needle-in-a-
haystack” because there is no apparent way to avoid having to examine an exponential (in the size
parameters of A) number of certificates.
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Example 4.2. We show that Clique ∈ NP. Let (G = (V,E), k) be a problem instance for Clique.

Step 1: define a certificate. Certificate C is a subset of V where |C| = k.

Step 2: provide a semi-formal verifier algorithm.

For each u ∈ C,

For each v ∈ C with u ̸= v,

If (u, v) ̸∈ E, then return 0.

Return 1.

Step 3: size parameters for Clique. m = |E| and n = |V |.

Step 4: provide the verifier’s running time with an explanation.

The nested for-loops require at most k2 = O(n2) query to determine if a pair of vertices (u, v). Each
query can be answered using a hash table that stores the graph edges. Building such a table takes
Θ(m) steps. Thus, algorithm’s total number of steps is O(m+n2) = O(n2) steps, which is quadratic
in the size of (G, k).
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Example 4.3. By repeating the steps of Example 4.2, prove that Subset Sum ∈ NP. Let (S, t) be
an instance of Subset Sum.

Step 1: define a certificate.

Step 2: provide a semi-formal verifier algorithm.

Step 3: provide size parameters for Subset Sum.

Step 4: provide the verifier’s running time with an explanation.
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Example 4.4. Recall from Exercise 10 of the Computational Problems lecture that the 3-Dimensional
Matching (3DM) decision problem takes as input three sets A, B, and C, each having size n, along
with a set S of triples of the form (a, b, c) where a ∈ A, b ∈ B, and c ∈ C. We assume that
|S| = m ≥ n. The problem is to decide if there exists a subset T ⊆ S of n triples for which each
member from A ∪B ∪ C belongs to exactly one of the triples.

Show that (A,B,C, S) is a positive instance of 3DM, where A = {a, b, c}, B = {1, 2, 3}, C = {x, y, z},
and

S = {(a, 1, x), (a, 2, z), (a, 3, z), (b, 1, x), (b, 2, x), (b, 3, z), (c, 1, x), (c, 2, z), (c, 3, y)}.

Solution.
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Example 4.5. By repeating the steps of Example 4.2, prove that 3DM ∈ NP. Let (A,B,C, S) be an
instance of 3DM.

Step 1: define a certificate.

Step 2: provide a semi-formal verifier algorithm.

Step 3: provide size parameters for 3DM.

Step 4: provide the verifier’s running time with an explanation.

10

Administrator
Pencil

Administrator
Pencil



Example 4.6. By repeating the steps of Example 4.2, prove that 3SAT ∈ NP. Let C be an instance
of 3SAT.

Step 1: define a certificate.

Step 2: provide a semi-formal verifier algorithm.

Step 3: provide size parameters for 3SAT.

Step 4: provide the verifier’s running time with an explanation.
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x1 ∨

x2 x3

Figure 2: Parse tree for Boolean formula x1 ∧ (x2 ∨ x3)

4.1 The Satisfiability (SAT) problem is in NP

A Boolean formula F (x1, . . . , xn) over variable set V = {x1, . . . , xn} may be represented with a
parse tree for which i) each internal node is labeled either ∧ or ∨, and ii) each leaf node is labeled
either xi or xi, for some i = 1, . . . , n. Leaf nodes are also called literal nodes, since a formula literal
is any variable or its negation. For example, the Boolean formula

F (x1, x2, x3) = x1 ∧ (x2 ∨ x3)

may be represented by the parse tree shown in Figure 2.

Definition 4.7. assignment over variable set V is a function α : V → {0, 1} that assigns to each
variable x ∈ V a member of {0, 1}. We may represent α using function notation, or as a labeled
tuple. Indeed, for the assignment α that assigns 1 to both x1 and x2, and 0 to x3, we may use
function notation and write α(x1) = 1, α(x2) = 1, and α(x3) = 0, or we may use tuple notation and
write α = (x1 = 1, x2 = 1, x3 = 0).

Given Boolean formula F and assignment α over V we may evaluate F using the function eval(F, α)
that returns a value in {0, 1}. We provide a recursive definition of eval(F, α) over the set of all
Boolean formulas defined over V .

Base Case If F consists of a leaf node labeled with literal l (i.e., x or x for some variable x), then

eval(F, α) = α(l).

Recursive Case (And) If the root of F is labeled ∧, and C1, . . . , Cm are the root children, then

eval(F, α) = eval(C1, α) ∧ · · · ∧ eval(Cm, α).

Recursive Case (Or) If the root of F is labeled ∨, and C1, . . . , Cm are the root children, then

eval(F, α) = eval(C1, α) ∨ · · · ∨ eval(Cm, α).

It is worth noting that eval(F, α) may be computed in O(|F |) steps, where |F | denotes the number
of nodes in formula F .
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Example 4.8. Use the recursive definition of eval to evaluate the formula

F (x1, x2, x3) = ((x1 ∨ x3) ∧ (x1 ∨ x2)) ∨ ((x2 ∨ x3) ∧ (x1 ∨ x3))

over the assignment α = (1, 0, 1). Demonstrate how the number of evaluation steps is proportional
to the number of nodes in the tree representation of F .
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Example 4.9. The satisfiability problem (SAT) is the problem of deciding if a Boolean formula
F (x1, . . . , xn) evaluates to 1 on some assignment α over the Boolean variables x1, . . . , xn. We show
that SAT ∈ NP. Let F (x1, . . . , xn) be an instance of SAT.

Step 1: define a certificate. Solution. α is an assignment over the variables x1, . . . , xn.

Step 2: provide a semi-formal verifier algorithm. Solution. Evaluate F (x1, . . . , xn) recursively.

//Base Case:

If F = l is a single literal, then return α(l).

//Recursive Case 1

If F = F1 ∧ F2 ∧ · · · ∧ Fk, then return

eval(F1, α) ∧ eval(F2, α) ∧ · · · ∧ eval(Fk, α).

//Recursive Case 2

If F = F1 ∨ F2 ∨ · · · ∨ Fk, then return

eval(F1, α) ∨ eval(F2, α) ∨ · · · ∨ eval(Fk, α).

Step 3: provide size parameters for SAT. Solution. The size parameter is |F |, the number of
nodes in F ’s parse tree.

Step 4: provide the verifier’s running time with an explanation. Solution. The verifier
has running time O(|F |), since evaluating F can be done by evaluating each node of F ’s parse tree
exactly once.

Therefore, SAT ∈ NP.
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Theorem 4.10. P ⊆ NP.

Proof. Let L ∈ P be a decision problem that can be decided in polynomial time. Then there is a
polynomial-time computable predicate function D(x) that decides L. We now show that L ∈ NP by
repeating the steps of Example 4.2.

Step 1: define a certificate. Solution. Since L ∈ P, a verifier for L does not require a certificate,
since it can run predicate function D(x) in polynomial time to determine if L-instance x is positive.
However we must follow the definition of being in NP. So we make a “dummy” certificate set C = {1}
consisting of a single member which the verifier can ignore.

Step 2: provide a semi-formal verifier algorithm. Solution.

// A one line program:

Return D(x).

Step 3: provide size parameters for L. Solution. Since L is a generic problem, we let |x| denote
the size of L-instance x.

Step 4: provide the verifier’s running time and defend your answer. Solution. Since L ∈ P,
predicate function D(x) may be computed in O(p(|x|)) steps, for some polynomial p.

Therefore, L ∈ NP.
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Do there exist decision problems that are in NP but not in P? This would imply that some problems
have solutions that can be verified in polynomial time, but not solved in polynomial time. Moreover,
NP problems such as Clique, Subset Sum, and 3DM are candidates since, at this writing, polynomial-
time algorithms for these problems have yet to be established. But at the same time a proof that
such algorithms do not exist has yet to be found.

To better understand the difficulty faced with resolving the P =? NP question, consider the SAT

problem. Several algorithms have been designed for solving instances of SAT and, although none of
them appear to run in polynomial-time, for some there is no proof that it does not run in polynomial
time. Moreover, it may be possible to design an “algorithm cocktail” that combines the best SAT

algorithms in a way that solves each of the “hard” instances in polynomial time where the polynomial
may have a very high degree. In other words, it’s possible that two things could be true at the same
time:

1. P = NP

2. but some instances of SAT require an exorbitant (albeit polynomial) amount of computational
resources to solve, both now and in the forseeable future.

The P=?NP problem is considered one of the most challenging and important in all of computer science
and mathematics. The Clay Mathematics Institute is awarding a prize of $1 million dollars to anyone
who can resolve this problem.
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5 NP-Complete Decision Problems

Now that we have an idea about the type of decision problems that belong in NP, we would like
a method for demonstrating that a decision problem is in some sense one of the hardest amongst
all problems in NP, and thus is the best candidate for not belonging to class P. Furthermore, if we
consider what might constitute a difficult problem amongst a class of problems, the most difficult
would seem to be one to which every other problem in the class can be reduced. Indeed, in the final
section of the Mapping Reducibility lecture the following statement was proved.

� If A ≤p
m B and B ∈ P then necessarily A ∈ P.

� Therefore, if every problem in NP were polynomial-time reducible to B ∈ NP, then the P =? NP

question would hinge on the question of whether B can be solved in polynomial time.

Definition 5.1. A decision problem B is said to be NP-complete iff

1. B ∈ NP

2. for every other decision problem A ∈ NP, A ≤p
m B.
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Theorem 5.2. (Cook’s Theorem) SAT is NP-complete.

Outline of a Proof of Cook’s Theorem

1. Let L ∈ NP be an arbitrary decision problem and x an instance of L.

2. Let v(x, c) be the verifier program associated with L.

3. Let q(|x|) denote the running time for v(x, c), where q is a polynomial.

4. Let variables y1, . . . , yl(|x|) be a collection of Boolean variables that is capable of encoding any
certificate c for verifying x, where l is a polynomial (one of the requirements of a certificate is
that its size must be polynomial with respect to |x|).

5. It can be shown that any program that runs in a polynomial q(|x|) number of steps and depends
on a polynomial l(|x|) number of Boolean variables, can be procedurally converted in polynomial
time to a Boolean formula

Fv,x(y1, . . . , yl(|x|)),

where

(a) Fv,x is satisfiable iff v(x, c) evaluates to 1 for some certificate c, iff x is a positive instance
of L, and

(b) |Fv,x| is bounded in size by some polynomial in terms of |x|, the size of x.

Therefore,
L ≤p

m SAT.
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6 More NP-Complete Problems

We now build on Cook’s theorem to show that a host of other problems are NP-complete (to this
date there are several thousand known NP-complete problems from several areas of computer science
and mathematics). We do this with the help of the following lemma. Its proof relies on the fact that
mapping reducibilities are transitive: if A ≤p

m B and B ≤p
m C, then A ≤p

m C.

Lemma 6.1. Suppose decision problems A and B are in NP, and A is both NP-complete and
polynomial-time reducible to B. Then B is NP-complete.
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Theorem 6.2. SAT ≤p
m 3SAT.

Proof. We prove the theorem by making use of what is referred to as the Tseytin transformation,
named after the Russian mathematician Gregory Tseytin. It is a method for transforming an instance
F of SAT to an instance C of 3SAT that is satisfiability-equivalent to F , meaning that F is satisfiable
iff C is satisfiable. Let F (x1, . . . , xn) be an instance of SAT. Without loss of generality, we may
assume that F has a binary parse tree T . Let n1, . . . , nm denote the internal nodes of T , where we
assume n1 correpsonds with the root. We assign a literal to each tree node. If n is a leaf, then the
literal assigned to n is the literal l for which n is labeled. If n = ni is an internal node, then we
introduce a new variable yi and associate it with ni.

Thus, the reduction f from SAT to 3SAT is such that f(F ) = C, and the variables used in the clauses
of C are precisely x1, . . . , xn, y1, . . . , ym. Moreover the clauses of C are obtained from each internal
node. For example, let ni be an internal node, and suppose it’s two children have associated literals
l1 and l2. If ni is a ∧-operation, then the goal is to replace the formula

yi ↔ (l1 ∧ l2)

with a logically equivalent conjunction of disjunctive clauses. The same is true in the case that ni is
a ∨-operation: we must replace

yi ↔ (l1 ∨ l2)

with a logically equivalent conjunction of disjunctive clauses.

Finally, we add the clause y1 to assert that formula F evaluates to 1.

To see that f(F ) = C is a polynomial-time reduction, we first note that C has a number of clauses
and variables that is linear in |F |. Is is because each formula of the form yi ↔ (l1∧ l2) or yi ↔ (l1∨ l2)
yields up to six disjunctive formulas. Thus f(F ) can be constructed in a number of steps that is
linear with respect to |F |.

Secondly, if F is satisfiable, then there is an assignment α over x1, . . . , xn for which F (α) = 1.
Moreover, based on the recursive tree evaluation of F (α), this computation of F (α) also yields a
correpsonding assignment β over the internal y variables in which y1 is assigned 1. Hence, α ∪ β is
a satisfying assignment for C. Conversely, if α ∪ β is a satisfying assignment for C, then, since the
formulas of C represent a non-recursive representation for evaluating F (x1, . . . , xn), it follows that α
must satisfy F , since it induces a computation of each node of F in which the root node is evaluated
to 1, since β must assign y1 = 1 in order to satisfy C.
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Example 6.3. Apply the reduction described in Theorem 6.2 to the Boolean formula

F (x1, x2, x3) = x1 ∧ (x2 ∨ x3)).

Solution. We introduce Boolean variables y1 and y2, where y2 ↔ (x2∨x3), and y1 ↔ (x1∧ y2. Then
F (x1, x2, x3) is satisfiable iff

y1 ∧ (y1 ↔ (x1 ∧ y2)) ∧ (y2 ↔ (x2 ∨ x3))

is satisfiable. We now convert the latter to a logically-equivalent 3SAT-formula.

Step 1: replace P ↔ Q with (P → Q) ∧ (Q → P ).

y1 ∧ (y1 → (x1 ∧ y2)) ∧ ((x1 ∧ y2) → y1) ∧ (y2 → (x2 ∨ x3)) ∧ ((x2 ∨ x3) → y2).

Step 2: replace P → Q with P ∨Q.

y1 ∧ (y1 ∨ (x1 ∧ y2)) ∧ ((x1 ∧ y2) ∨ y1) ∧ (y2 ∨ (x2 ∨ x3)) ∧ ((x2 ∨ x3) ∨ y2).

Step 3: apply De Morgan’s rule.

y1 ∧ (y1 ∨ (x1 ∧ y2)) ∧ (x1 ∨ y2 ∨ y1) ∧ (y2 ∨ (x2 ∨ x3)) ∧ ((x2 ∧ x3) ∨ y2).

Step 4: distribute ∨ over ∧.

y1 ∧ ((y1 ∨ x1) ∧ (y1 ∨ y2)) ∧ (x1 ∨ y2 ∨ y1) ∧ (y2 ∨ x2 ∨ x3) ∧ ((x2 ∨ y2) ∧ (x3 ∨ y2)).

Step 5: Repeat last literal enough times to make three literals per clause and use clause notation.

{(y1, y1, y1), (y1, x1, x1), (y1, y2, y2), (x1, y2, y1), (y2, x2, x3), (x2, y2, y2), (x3, y2, y2)}.
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For the reduction from SAT to 3SAT, it’s fair to ask why it is necessary to add new y-variables and
through so many steps to transform F to a set of 3SAT clauses. For example, why not just map F to

{(x1, x1, x1), (x2, x3, x3)}?

The problem is that not all formulas are this simple, and some relatively simple formulas may require
an exponential number of steps if no new variables are introduced. As an example, consider the
formula

F (x1, . . . , x2n) = (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ · · · ∨ (x2n−1 ∧ x2n).

This formula is in what is called disjunctive normal form (DNF) since it is an OR of AND’s.
Moreover, to convert it to a logically equivalent formula in conjunctive normal form (CNF), an
AND of OR’s, would require a number of steps that is exponential with respect to n. This is because
it’s logically equivalent CNF form has 2n clauses! Verify this for n = 2 and n = 3 by repeatedly
applying the distributive rule of ∨ over ∧.

Although it is seems lengthy even for the simplest of formulas, the reduction method used in
Example 6.3 has the advantage of requiring a maximum of C > 0 steps per logic operation of
F , where C is a constant. This is because all five steps of the procedure require only a constant
number of operations. Therefore, the reduction can be completed in O(|F |) steps which is a linear
(and hence a polynomial) number of steps with respect to the size of F .
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Theorem 6.4. The following decision problems are all NP-complete: Clique, Vertex Cover, Independent
Set, Half Vertex Cover, Half Clique, Subset Sum, and Set Partition.

Proof. All of the following mapping reductions were proved in the Mapping Reducibility lecture.

3SAT ≤p
m Clique ≤p

m Half Clique,

Clique ≤p
m Independent Set,

and
3SAT ≤p

m Subset Sum ≤p
m Set Partition.

Also, Exercise 18 yields

Independent Set ≤p
m Vertex Cover ≤p

m Half Vertex Cover.

Finally, since
SAT ≤p

m 3SAT

by Theorem 6.2, Lemma 6.1 implies that all of the above problems are NP-complete.
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Theorem 6.5. An instance of the Directed Hamilton Path (DHP) decision problem is a directed
graph G = (V,E) and two vertices a, b ∈ V . The problem is to decide of G possesses a directed
simple path from a to b and having length n − 1. Sucha a path is called a (Directed) Hamilton
Path (DHP). Then DHP is NP complete.

Proof. The fact that DHP is in NP is left as Exercise 5. We show a polynomial-time mapping
reduction from 3SAT. Let C be a collection of m ternary clauses over n variables. We proceed to
define f(C) = (G = (V,E), a, b), a directed graph G = (V,E) along with two vertices a, b ∈ V so that
G has a Hamilton path from a to b iff C is satisfiable.

G is defined as follows (see the graph in Example 6.6 for a specific image of the following general
description). G has m clause vertices c1, . . . , cm and n diamond subgraphs, one corresponding to each
variable xi, 1 ≤ i ≤ n. Diamond subgraph Di consists of a top vertex ti, bottom vertex bi, left vertex
li, and right vertex ri, along with edges

(ti, li), (ti, ri), (li, bi), (ri, bi).

In addition, there is a row of 3m− 1 vertices that connect li with ri:

lci1, rci1, si1, lci2, rci2, si2 . . . , lcim, rcim.

The sij vertices, j = 1, . . . ,m − 1, are called separators, while the lcij and rcij pairs, j = 1, . . . ,m,
correspond with each of the m clauses and are used for making round-trip excursions to each of the
clause vertices. Every vertex in the row is bidirectionally adjacent to both its left and right neighbor,
i.e.,

(li, lci1), (lci1, rci1), (rci1, si1), . . . , (si(m−1), lcim), (lcim, rcim), (rcim, ri) ∈ E,

as well as the reversals of each of these edges. Finally, if xi is a literal of clause cj, then edges
(rcij, cj), (cj, lcij) are added. On the other hand, if xi is a literal of clause cj, then edges (lcij, cj), (cj, rcij)
are added.

Finally, for 1 ≤ i ≤ n − 1 the edges (bi, ti+1) are added to connect the n diamond subgraphs, and
a = t1, while b = bn. We leave it as an exercise to show that f(C) = (G = (V,E), a, b) can be
constructed in time that is polynomial with respect m and n. It remains to prove that C is satisfiable
iff f(C) = (G = (V,E), a, b) has a DHP from a to b.

Claim. Suppose P is a DHP from a to b. Then, for all i = 1, . . . , n − 1, P must visit every vertex
in Di before moving to a later diamond Dj, j > i.

Proof of Claim. Suppose by way of contradiction that P is a DHP from a to b, and let Di be the
first diamond where the path moves from Di to Dj, for some j > i, without having visited every
vertex in Di. The only way this can happen is if P moves from either vertex lcik or rcik in Di to
clause vertex ck, and then from there moves to either vertex lcjk or rcjk in Dj. In other words, the
clause vertex ck acts as a bridge between the two diamonds. Without loss of generality, assume that
P is moving from left to right through Di, then moves from lcik to ck, followed by moving to either
lcjk or rcjk. Now consider vertex rcik. The only vertex that has yet to be visited and can reach rcik
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is separator vertex sik. Thus, rcik must immediately follow sik in P . But then there are no other
vertices that can be visited after rcik since both lcik and sik have been visited, which contradicts that
P is a DHP from a = t1 to b = bn. A similar argument holds if instead the path moves from rcik to
ck.

By the above claim, we see that, when forming a DHP, there is at most one direction (left-to-right
or right-to-left) that a path can move through a diamond Di and be able to visit some clause vertex
c. Moreover, based on how G was defined, the direction is left-to-right (respectively, right-to-left) iff
xi (respectively, xi) is a literal of c. For some path P that traverses through all the diamonds (and
perhaps some of the clause vertices), starting at a and finishing at b, let ∆(P ) = (δ1, . . . , δn) denote
a binary vector, where δi denotes the direction that P takes (0 = left-to-right, 1 = right-to-left)
through diamond Di. We’ll call ∆(P ) the signature of P . As an example, consider the path P
shown in Example 6.6 that is highlighted in green. Then its signature is ∆(P ) = (0, 1) since it moves
left-to-right in the x1 diamond, and right-to-left in the x2 diamond.

Now suppose C is satisfiable via satisfying assignment α. Then there is a path P for which P i) has
signature ∆(P ) = (α(x1), . . . , α(xn)), ii) visits every clause vertex exactly once, and iii) is a DHP
from a to b. To see this, consider a clause cj and let i be the least index for which α(xi) satisfies cj.
Then if, for example, α(xi) = 1, then xi is a literal of cj and, by the way in which G was defined, P
may move from right to left in Di and visit cj via the sequence rcij, cj, lcij. Therefore, every clause
clause vertex gets visited exactly once and P is a DHP from a to b.

Conversely, suppose P is a DHP in G and let ∆(P ) = (δ1, . . . , δn) be its signature. Then the variable
assignment α defined by α(xi) = δi, i = 1, . . . , n, satisfies C. To see this, consider a clause cj and let
Di be the diamond from where P visits cj. Then by the way G was defined, P can either visit cj by
moving left-to-right, in which case xi is a literal of cj and α(xi) = δi = 0 satisfies cj, or by moving
right to left, in which case xi is a literal of cj and α(xi) = δi = 1 satisfies cj. In either case α satisfies
cj and, since j was arbitrary, we see that α satisfies C.
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Example 6.6. The following graph shows f(C), where

C = {c1 = (x1, x2, x2), c2 = (x1, x2, x2), c3 = (x1, x2, x2)}

is an instance of 3SAT and f is the reduction reduction given in Theorem 6.5.

a

lc1 rc1 lc2 rc2 lc3 rc3

lc1 rc1 lc2 rc2 lc3 rc3

b

c1 c3

c2

x1
= 0 x

1 = 1

x2
= 0 x

2 = 1
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Notice that C is satisfiable via assignment α = (x1 = 0, x2 = 1). Therefore, f(C) must have a
DHP from a to b. In fact, α gives directions for the path: go left in the x1-diamond, right in the
x2-diamond, and visit a clause vertex if i) it has yet to be visited and ii) the clause is satisified by
the direction of movement through the diamond. The figure below shows such a DHP in green.

a

lc1 rc1 lc2 rc2 lc3 rc3

lc1 rc1 lc2 rc2 lc3 rc3

b

c1 c3

c2

x1
= 0 x

1 = 1

x2
= 0 x

2 = 1
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Theorem 6.7. The Hamilton Path (HP) decision problem is the same problem as DHP, but now
the edges of graph G are assumed undirected. HP is is NP complete.

Proof. The proof that HP is in NP is almost identical to that of showing it for DHP. Furthermore, we
may map reduce DHP to HP via the function f(G = (V,E), a, b) = (G′ = (V ′, E ′), a′, b′). To get G′

from G, we convert each vertex v ∈ V to three vertices in V ′: vin, vmid andn vout. Also we add add
to E ′ the undirected edges

(vin, vmid), (vmid, vout).

Also, for each directed edge (u, v) ∈ E, we add to E ′ the edge (uout, vin). Finally, a′ = ain while
b′ = bout. We leave it as an exercise to show that G has a DHP from a to b iff G′ has an HP from a′

to b′.
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Example 6.8. Given the graph G shown below, provide f(G, a, b), where f is the mapping reduction
from DHP to HP.

a b

c d
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We leave it as an exercise to show Hamilton Cycle (HC) is in NP and to provide a mapping reduction
from HP to HC. Doing this establishes that HC is NP-complete.

Theorem 6.9. An instance of the Traveling Salesperson (TSP) decision problem is a complete
weighted graph G = (V,E,w) and a number k, and the problem is to decide if there exists a Hamilton
cycle in G whose edge weights sum to a value that does not exceed k. Then TSP is NP-complete.

Proof. We leave it as an exercise to show that TSP ∈ NP. To show it is NP-complete, we map reduce
HC to TSP. Let G = (V,E) be an instance of HC, where n = |V | ≥ 3. Define f : HC → TSP by

f(G = (V,E)) = (G′ = (V,E ′, w), n),

where G′ is obtained by taking G and assigning weight 1 to each of its edges. Furthermore, for any
u, v ∈ V for which (u, v) ̸∈ E, we add the edge (u, v) to E ′ and assign it weight n. Thus, G′ is a
complete weighted graph.

We see that f is computable in O(n2) steps which is the number of steps needed to construct a
complete graph over n vertices. Also, if G has an HC, then G′ has an HC having cost n. Conversely,
if G′ has an HC with a cost of at most n, then this HC must only use unit-weight edges, which means
it only uses edges in E. Therefore, G has an HC.
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Example 6.10. Given the graph G shown below, provide f(G), where f is the mapping reduction
from HC to TSP.

1 2 3

4 5 6
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The Complexity Class co-NP

Given a decision problem L, the complement of L, denoted L, is that decision problem for which
a positive (respectively, negative) instance x of L is a negative (respectively, positive) instance of L.

Example 6.11. If L is the problem of deciding if a positive integer is prime, then define its
complement L.

Solution.
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Example 6.12. Define the complement of the SAT decision problem.

Solution.
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A Logical definition of Co-NP

It is left as an exercise to show that if L ∈ P then L ∈ P. On the other hand, it is believed that NP and
co-NP are different complexity classes because each has its own distinct predicate-logic definition.

For example, consider a problem L ∈ NP which has certificate set C and verifier function v(x, c).
Then we may logically write that x is a positive instance of L iff

∃
c∈C

v(x, c)

evaluates to 1.

Now consider its complement L ∈ co-NP. Then we may logically write that x is a positive instance
of L iff it is a negative instance of L iff

¬ ∃
c∈C

v(x, c) ⇔

∀
c∈C

(¬v(x, c)) ⇔

∀
c∈C

v′(x, c).

evaluates to 1, where v′(x, c) = ¬v(x, c). In other words, co-NP problems are logically defined with
a universal predicate-logic statement, while an NP problem is logically defined with an existential
predicate-logic statement. Thus, logically speaking, these classes seem different in that their problems
are complementary to one another.
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Example 6.13. For each of the following problem definitions, provide the complexity class (P, NP,
or co-NP) that best fits the problem.

Tautology Given a Boolean formula F (x1, . . . , xn) does F evaluate to 1 on all possible 2n binary
input vectors?

Reachability Given a simple graph G = (V,E) and two vertices a, b ∈ V , does there exist a path
in G starting at a and ending at b?

Dominating Set Given a simple graph G = (V,E) and an integer k ≥ 0, does there exist a set D of
k vertices for which every vertex in V −D is adjacent to some vertex in D?

Bounded Cliques Given a simple graph G = (V,E) and an integer k ≥ 0, it true that G has no
k-cliques?
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Exercises

1. Let Triangle be the problem of deciding if a simple graph G = (V,E) has a 3-clique. Provide
a semi-formal algorithm that establishes that Triangle is in P. Explain why your algorithm
requires at most a polynomial number of steps.

2. An instance of 4-Subset Sum is a pair (S, t), where S is a set of positive integers and t > 0 is a
positive integer, and the problem is to decide if there are four distinct members of S, x, y, z, w,
for which x + y + z + w = t. Provide a semi-formal algorithm that establishes that 4-Subset
Sum is in P. Explain why your algorithm requires at most a polynomial number of steps.

3. An instance of the 3-Coloring decision problem is a simple graph G = (V,E), and the problem
is to decide if the vertices of G can be colored using three colors (red, blue, and green) in such
a way that no two adjacent vertices have the same color. In other words, does there exist a
function color : V → {red, blue, green}, for which, for any edge (a, b) ∈ E, color(a) ̸= color(b)?
For example, verify that following graph

1 2 3

4 5 6

admits the 3-coloring

Vertex Color
1 red
2 green
3 blue
4 blue
5 green
6 red

Prove that 3-Coloring is in NP by completing the following steps.

a. Define a certificate for 3-Coloring.

b. Provide a semi-formal algorithm for the 3-Coloring verifier.

c. Provide size parameters for 3-Coloring.

d. Provide the verifier’s running time and defend your answer.

4. Recall that an instance of Set Partition is a set S of nonnegative integers and the problem
is to decide if there are are subsets A,B ⊆ S for which i) A ∩B = ∅, ii) A ∪B = S, and iii)∑

a∈A

a =
∑
b∈B

b.
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Prove that Set Partition is in NP by completing the following steps.

a. Define a certificate for Set Partition.

b. Provide a semi-formal algorithm for the Set Partition verifier.

c. Provide size parameters for Set Partition.

d. Provide the verifier’s running time and defend your answer.

5. Recall the DHP decision problem, where an instance consists of a directed graph G = (V,E) and
vertices a, b ∈ V and the problem is to decide if G has a directed Hamilton path (DHP), Prove
that DHP is in NP by completing the following steps.

a. Define a certificate for DHP.

b. Provide a semi-formal algorithm for the DHP verifier.

c. Provide size parameters for DHP.

d. Provide the verifier’s running time and defend your answer.

6. Consider the Solitaire decision problem, where an instance consists of an m × n grid, and
each square in the grid is either empty, has a single red stone, or has a single black stone. The
problem is to decide if, for each column, there is a subset of the stones that can be removed so
that i) every column has zero or more stones of the same color, and ii) every row has at least
one stone placed in it. Show that the following is a positive instance of Solitaire.

7. Prove that the Solitaire decision problem defined in the previous exercise is in NP by completing
the following steps.

a. Define a certificate for Solitaire.

b. Provide a semi-formal algorithm for the Solitaire verifier.
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c. Provide size parameters for Solitaire.

d. Provide the verifier’s running time and defend your answer.

8. An instance of Set Cover is a triple (S,m, k), where S = {S1, . . . , Sn} is a collection of n
subsets, where Si ⊆ {1, . . . ,m}, for each i = 1, . . . , n, and a nonnegative integer k. The
problem is to decide if there are k subsets Si1 , . . . , Sik for which

Si1 ∪ · · · ∪ Sik = {1, . . . ,m}.

Verify that (S,m, k) is a positive instance of Set Cover, where m = 9, k = 4, and

S = {{1, 3, 5}, {3, 7, 9}, {2, 4, 5}, {2, 6, 7}, {6, 7, 9}, {2, 7, 9}, {1, 3, 7}, {4, 5, 8}}.

9. Given Boolean formula

F (x1, x2, x3, x4) = x1 ∧ (x2 ∨ (x3 ∧ (x1 ∨ x2) ∧ x4)),

draw its parse tree and provide two assignments α and β for which F (α) = 1 and F (β) = 0.

10. Provide the three 3SAT clauses whose conjunction is logicaly equivalent to the Boolean formula
x ↔ (y ∨ z).

11. Provide the three 3SAT clauses whose conjunction is logicaly equivalent to the Boolean formula
x ↔ (y ∧ z).

12. The transformation used in Example 5 from a SAT formula to an instance of 3SAT is referred
as the Tseytin transformation, named after the Russian mathematician Gregory Tseytin.
Apply the Tseytin transformation to the formula

F = x1 ∨ (x2 ∧ (x3 ∨ x1))

to obtain an instance of 3SAT.

13. Consider the following 3SAT instance

C = {c1 = (x1, x4, x5), c2 = (x2, x3, x5), c3 = (x1, x2, x4), c4 = (x1, x3, x4), c5 = (x2, x3, x5),

c6 = (x1, x3, x5), c7 = (x2, x3, x4), c8 = (x1, x4, x5), c9 = (x2, x4, x5)), c10 = (x1, x4, x5)},

and consider the mapping reduction f : 3SAT → DHP described in Theorem 6.5.

a. Verify that C is satisfiable by finding a satisfying assignment.

b. Consider f(C) = (G, a, b) and let P be the directed Hamilton path from a to b that is
guaranteed by the mapping reduction. Indicate the direction (left or right) that the path
takes in each of the diamonds.

c. For each clause c, what it the earliest diamond from which c can be visited along path P?
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14. For the graph G below, compute f(G, a, b) = (G′, a′, b′) where f is the mapping reduction from
DHP to HP. Draw G′ and verify that it has an HP from a′ to b′, since G has a DHP from a to b.

a c d e

f g b

15. Recall the reduction from DHP to HP described in Theorem 6.7. Suppose this reduction only
used vin and vout for each vertex, but did not use vmid. Show by example that the mapping
reduction is no longer valid. In other words, including vmid is essential.

16. Consider the following practical application of a mapping reduction from HP to HC.

a. Rakesh’s logistics project requires that he determine whether or not a particular undirected
graph G = (V,E) has a Hamilton Path from vertex a to vertex b. Moreover, his colleague
Jennifer has implemented a function that takes as input a simple undirected graph G =
(V,E) and returns 1 iff G has a Hamilton Cycle. Jennifer says to Rakesh, “you may use
my function to get your answer, just make sure to add an edge (if one doesn’t already
exist) that connects a with b”. In other words, Jennifer has provided Rakesh with a way
to reduce his HP problem instance to an instance of HC. Give an example that shows that
the answer returned by Jennifer’s function might not coincide with the answer to Rakesh’s
original problem. Conclude that Jennifer’s reduction does not work.

b. What modification should Jennifer have asked Rakesh to make to his graph so that her
program’s answer would be sure to coincide with the answer to Rakesh’s original problem?

17. For the graph G below, compute f(G) = (G′, k) where f is the mapping reduction from HC to
Traveling Salesperson. Draw G′, provide k, and verify that G′ has a Hamilton cycle whose
cost does not exceed k.
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a b c

d e f

18. Provide a polynomial-time mapping reduction from Independent Set to Vertex Cover. Defend
your reduction: i) establish that it is computable in a polynomial number of steps with respect
to the size parameters of IS, and ii) argue that a positive (respectively, negative) instance of
IS maps to a positive (respectively, negative) instance of Vertex Cover. Hint: if C is a vertex
cover for G = (V,E) of size k, what can you say about the subset of vertices V − C?

19. Prove that Set Cover (see Exercise 8) is an NP-complete problem. Hint: reduce from Vertex

Cover.

20. For graph G shown below and k = 3 Compute f(G, k), where f is the mapping reduction from
VC to Set Cover from the previous exercise.

1 2 3

4 5 6

21. Let Double-SAT be the problem of deciding if a Boolean formula has at least two satisfying
assignments. Provide a polynomial-time reduction from SAT to Double-SAT.

22. Let C be a 3-CNF formula. A ̸=-assignment to C is a truth assignment that satisfies C, but in
such a way that every clause of C has at least one literal set to true, but also has one literal set
to false.

a. Prove that, if a is a ̸=-assignment, then so is its negation a, where the negation of an
assignment is the assignment that is obtained by negating each assignment value of a.
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b. Let ̸=-SAT be the problem of deciding if a 3-CNF Formula has a ̸=-assignment. Prove
that 3SAT is polynomial-time mapping reducible to ̸=SAT, by mapping each clause ci of
the form (l1 ∨ l2 ∨ l3) to the two clauses

(l1 ∨ l2 ∨ zi) and (zi ∨ l3 ∨ b),

where zi is a newly introduced variable specific to ci, and b is a single new “global” variable.

23. An instance (S, C) of Set Splitting is a finite set S and a collection of subsets C = {C1, . . . , Cm}
of S. The problem is to decide whether or not S can be partitioned into two sets A and B such
that

a. S = A ∪B

b. A ∩B = ∅
c. Ci ∩ A ̸= ∅, for all i = 1, 2, . . . ,m

d. Ci ∩B ̸= ∅, for all i = 1, 2, . . . ,m.

Prove that Set Splitting is NP-complete. Hint: map reduce from ̸=-SAT.
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Exercise Solutions

1. We have the following algorithm.

Name: has triangle

Input: simple graph G = (V,E).

Output: true iff G has a triangle.

Add each edge e ∈ E to a lookup table.

For each u ∈ V ,

For each v ∈ V with v ̸= u,

For each w ∈ V with w ̸= u and w ̸= v,

If (u, v) ∈ E, and (u,w) ∈ E, and (v, w) ∈ E, Return 1.

Return 0.

Each of the three nested loops makes at most n = |V | iterations, for a total of O(n3) iterations.
Therefore, Triangle is in P.

2. On inputs S and t, Consider an algorithm that iterates through each 4-subset {x, y, z, w} ∈ S
and checks if x+ y + z + w = t. Since there are(

n
4

)
=

n(n− 1)(n− 2)(n− 3)

4!
= Θ(n4),

4-subsets and each x+ y + z + w sum requires O(3b) = O(b) steps (where b is a bound on the
number of bits used by each member of S and t), we see that the algorithm requires O(bn4)
steps which is a (fifth-degree) polynomial in the size parameters of 4-Subset Sum.

3. The following establishes 3-Coloring is in NP.

a. Certificate C is a vector of length n, where the i th vector component, i ≥ 1, is one of
red, blue, green.

b. The following is the verifier algorithm.

Inputs: i) simple graph G = (V,E) ii) certificate C which is an n-dimensional color
vector, and determines the color of the i th vertex.

Output: true iff C does not color two adjacent vertices with the same color.

For each e = (ui, vj) ∈ E,

If Ci = Cj, Return 0.

Return 1.

c. Size parameters: m = |E|, n = |V |.
d. Algorithm analysis: the algorithm requires O(m) steps since it iterates once through the

set of edges, and accessing a vertex’s color from vector C can be done in constant time.
Therefore, 3-Coloring is in NP.

4. The following establishes SP is in NP. Assume S is an instance of SP.
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a. Certificate A is a subset of S.

b. The following is the verifier algorithm.

Inputs: i) set S of nonnegative integers, ii) certificate A ⊆ S.

Output: true iff the members in A sum to the members not in A (i.e. in B = S−A).

Initialize: B = S − A

Return (
∑
a∈A

a =
∑
b∈B

b).

c. Size parameters: n = |S|, m is a bound on the maximum number of bits required by any
number in S.

d. Algorithm analysis: the algorithm requires O(mn) steps since it requires making at most
n additions with numbers that are at most m-bits each. Therefore, SP is in NP.

5. The following establishes DHP is in NP. Assume (G = (V,E), a, b) is an instance of HP, where
a ∈ V is the start vertex and b ∈ V is the end vertex.

a. For simplicity, assume V = {1, . . . , n}, a = 1, and b = n. Certificate P is a permutation
of the numbers 1, . . . , n.

b. The following is the verifier algorithm.

Inputs: i) simple graph G = (V,E), ii) certificate P , a permutation of the numbers
1, . . . , n = |V |.
Output: true iff P forms a valid Hamilton path in G.

If P (1) ̸= 1 or P (n) ̸= n, Return 0.

Store the edges of G in a lookup table.

For i = 1, . . . , n− 1

If (P (i), P (i+ 1) ̸∈ E, Return 0.

Return 1.

c. Size parameters: n = |V |, m = |E|.
d. The algorithm requires O(m + n) steps since it requires O(m) steps to build the lookup

table and then O(n) to make sure each pair (P (i), P (i + 1)) is an edge of G. Therefore,
DHP is in NP.

6. Remove all the red stones from column 1, and all the black stones from columns 2-4. Notice
that every row has a stone and every column has stones of the same color.
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7. The following establishes Solitaire is in NP. Assume m × n matrix M is an instance of
Solitaire, where the entries for M are either 0 (empty), 1 (black), or -1 (red).

a. Certificate R is an n-dimensional vector (R1, . . . , Rn), where Rj ⊆ {1, . . . ,m} indicates
those row values where a stone in column j is to be removed.

b. The following is the verifier algorithm.

Inputs: i) {−1, 0, 1}-matrix M , ii) certificate vector R = (R1, . . . , Rn) of subsets of
{1, . . . ,m}.
Output: true iff R is a legal and winning prescription for which stones are to be
removed in each column.

//Check for columns that have stones of different colors.

For each j = 1, . . . , n,

For each i1 = 1, . . . ,m for which i1 ̸∈ Rj,

For each i2 = 1, . . . ,m for which i2 ̸∈ Rj,

If M [i1, j]M [i2, j] = −1, Return 0. //A red and black stone each remain in
column j.

//Check for rows having no stones.

For each i = 1, . . . ,m,

If ∀j(M [i, j] = 0 ∨ i ∈ Rj), Return 0. //Row i has no stones.

Return 1.

c. Size parameters: m: number of rows of M . n: number of columns of M .

d. Algorithm analysis: We assume that all membership queries to each Rj set, j = 1, . . . ,m,
requires O(1) steps. This can be accomplished if we represent each Rj as an array of size
m. Checking if any columns have different colored stones after the removals have been
made requires at most O(m2n) steps, while checking if any row is empty requires O(mn)
steps for a total of O(m2n) steps. Therefore, Solitaire is in NP.
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8. The sets
{{1, 3, 5}, {2, 6, 7}, {2, 7, 9}, {4, 5, 8}}

satisfy
{1, 3, 5} ∪ {2, 6, 7} ∪ {2, 7, 9} ∪ {4, 5, 8} = {1, 2, . . . , 9}.

9.

∧

x1 ∨

x2 ∧

x3 ∨

x1 x2

x4

10. We have
x ↔ (y ∨ z) ⇔ (x → (y ∨ z)) ∧ ((y ∨ z) → x) ⇔

(x ∨ y ∨ z) ∧ (y ∨ x) ∧ (z ∨ x) ⇔

(x ∨ y ∨ z) ∧ (y ∨ x ∨ x) ∧ (z ∨ x ∨ x).

11. We have
x ↔ (y ∧ z) ⇔ (x → (y ∧ z)) ∧ ((y ∧ z) → x) ⇔

(x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z ∨ x) ⇔

(x ∨ y ∨ y) ∧ (x ∨ z ∨ z) ∧ (y ∨ z ∨ x).

12. We have
y1 ∧ (y1 ↔ (x1 ∨ y2)) ∧ (y2 ↔ (x2 ∧ y3)) ∧ (y3 ↔ (x3 ∨ x1)).

Then use the previous two excercises to convert each double-arrow equivalence to CNF.

13. We have the following.

a. α = (x1 = 1, x2 = 1, x3 = 0, x4 = 0, x5 = 1) satisfies C.
b. Since C is a positive instance of 3SAT, f(C) = (G, a, b) is a positive instance of DHP.

Moreover, according to α from part a, the path has the following signature: move right
in diamond 1, move right in diamond 2, move left in diamond 3, move left in diamond 4,
move right in diamond 5.

c. The earliest diamond from which clause c can be visited corresponds with the least index
i for which the assigned value to xi from α satisfies c. For c1, this would be diamond 4,
since x4 satisfies c1 and x1 does not. Similarly, for c2 it is diamond 2, since x2 satisfies c2.

14.
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15.

16. The problem is that Rakesh’s graph may not have a Hamilton path from a to b but still could
have a Hamilton cycle (give an example of such a graph). So, if he simply connects a to b,
then his graph will still be a negative instance of HP, but will be a positive instance of HC

and Jennifer’s algorithm will return an incorrect answer. To remedy this, Rakesh should add
a new vertex v′ to his graph, along with edges (a, v′) and (b, v′). Then, if his original graph
has a Hamilton path P from a to b, then P, v′, a yields a Hamilton cycle for his new graph.
Conversely, if his new graph has a Hamilton cycle, then the cycle must use the edges (a, v′)
and (b, v′) since they are the only edges incident with v′. In fact, the cycle can be written
C = a, v′, b, . . . , a, where b, . . . , a represents a Hamilton path from b to a, and so the reversal
of this path gives a Hamilton path from a to b. Therefore, Rakesh’s graph will be positive for
HP iff his modified graph is positive for HC and the mapping reduction is now valid.

17.

18. Let G = (V,E) be a simple graph. The key insight is that G has an independent set I of size
k iff it has a vertex cover of size |V | − k. This is because every edge e ∈ E is incident with at
least one vertex that is not in I. If this were false, then there would be an edge that is only
incident with vertices in I which would imply that two vetices in I are adjacent, contradicting
the independence of I. Therefore, the mapping reduction is simply,

f(G = (V,E), k) = (G = (V,E), n− k),

where n = |V |. Assuming n is provided as part of the input, then f is computable in O(log n)
steps since we only need to subtract k from n. Finally, based on the above reasoning, G has a
k-independent iff f(G, k) = (G, n− k) has a vertex cover of size n− k.

19. We leave it as an exercise to prove that Set Cover is in NP. We now provide a polynomial-time
mapping reduction from Vertex Cover to Set Cover. Let (G = (V,E), k) be an instance of
VC. Without loss of generality assume V = {1, 2, . . . , n} and E = {e1, e2, . . . , em}, where each
edge ei is of the form (k, j) for some k, j ∈ V . We map this instance to the Set Cover instance
(S,m, k), where S = {S1, . . . , Sn}, and, for each i = 1, 2, . . . , n,

Si = {j|edge ej is incident with vertex i}.

In words, Si is the set of all (indices of) edges that are covered by vertex i. Based on these
definitions and the definition of the Set Cover decision problem, instance (S,m, k) is a positive
instance of Set Cover iff there are sets Si1 , . . . , Sik for which

Si1 ∪ · · · ∪ Sik = {1, . . . ,m}.

But this is equivalent to there being k vertices of G that cover all the edges in E. In other
words, (G = (V,E), k) is a positive instance of VC iff (S,m, k) is a positive instance of Set

Cover.

Finally, the mapping reduction requires O(m + n) steps to construct the sets in S from G =
(V,E), where m = |E| and n = |V |.
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20. We first label each of G’s edges as is shown below. Note: please ignore the directions on each
edge. This is a technical error. Then f(G, k) = (S,m = 8, k = 3) is the instance of Set Cover

for which
S = {S1, . . . , S6}

and

S1 = {e1, e2}, S2 = {e1, e3, e9}, S3 = {e4, e5, e6}, S4 = {e2, e3, e4, e7}, S5 = {e7, e5, e8}, S6 = {e6, e8, e9}.

Then G has a vertex cover of size k = 3 iff (S,m = 9, k = 3) has a cover of size k = 3, since the
sets in the cover correspond with vertices in G, and the members of the sets correspond with
the edges of G.

1 2 3

4 5 6

e1

e2 e 3

e
9e4 e 5

e6

e7 e8

21. f(F ) = F̂ , where F̂ = F ∧ (z ∨ z), where z is a variable that does not appear in F . Then F is
satisfiable iff F̂ has two satisfying assignments (one that sets z = 1, the other that sets z = 0).
In other words, F is a positive instance of SAT iff f(F ) is a positive instance for Double-SAT.
Note also that f(F ) can be computed in polynomial time, since we simply add two nodes to
F ’s tree.

22. a. Given ̸=-SAT instance C and ̸=-assignment α that satisfies C, for any c ∈ C we have
α(l1) = 0 and α(l2) = 1, where l1 and l2 are literals of c. Thus, α(l1) = 1 and α(l2) = 0
and so, since c was arbitrary, α is also a ̸=-assignment.

b. Let C be a satisifiable instance of 3SAT having variables x1, . . . , xn and clauses c1, . . . , cm.
Let α be a satisfying assignment for C. We can get a ̸=-assignment for f(C) over the
variables x1, . . . , xn, z1, . . . , zm, b, by extending α to α̂ in the following way. First, assign
α̂(b) = 0. Next, consider clause ci = (l1, l2, l3) of C.
Case 1: α(l1) = α(l2) = 0. Then α(l3) = 1, so assign α̂(zi) = 1. In this case, α̂ is a ̸=
assignment for

(l1 ∨ l2 ∨ zi) and (zi ∨ l3 ∨ b).

Case 2: α(l1) = 1 or α(l2) = 1. In this case assign α̂(zi) = 0. Then α̂ is a ̸= assignment
for

(l1 ∨ l2 ∨ zi) and (zi ∨ l3 ∨ b).

Thus, assigning b = 0 and the z’s in the above manner show that a positive instance of
3SAT maps to a positive instance of ̸=-SAT.
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Conversely, now assume that f(C) has a ̸=-assignment α̂. Without loss of generality, we
may assume that α̂(b) = 0 (why?). Let ci ∈ C be arbitrary, where ci = (l1, l2, l3).

Case 1: α̂(zi) = 1. Then α̂(zi) = 0 which forces α̂(l3) = 1.

Case 2: α̂(zi) = 0. Then either α̂(l1) = 1 or α̂(l2) = 1.

Finally, let α denote the restriction of α̂ to the variables x1, . . . , xn. Then the above two
cases imply that, for each ci ∈ C, α assigns a literal of ci to 1. Therefore, C is a positive
instance of 3SAT.

23. We leave it as an exercise to prove that Set Splitting is in NP. Given C, an instance of ̸=SAT,
let x1, . . . , xn be its variables, and c1, . . . , cm its clauses. Then f(C) = (S, Ĉ) consists of set
S = {x1, x1, . . . , xn, xn}, while Ĉ consists of sets c1, . . . , cm, along with {x1, x1}, . . . , {xn, xn}.
Then if α is a ̸=-assignment for C, let A be the subset of literals l for which α(l) = 1. For
example, if α = (x1 = 1, x2 = 0, x3 = 1), then A = {x1, x2, x3}. Furthermore, let B = A be
the complement of all the literals of A. For example, if A = {x1, x2, x3}, then B = {x1, x2, x3}.
Clearly, A ∪ B = S, and both A and B intersect each of the sets of C. Indeed, since α is a
̸=-assignment, each clause c will contain a literal of A and a literal of B, while each set {xi, xi}
will have either xi ∈ A and xi ∈ B, or xi ∈ B and xi ∈ A.

Conversely, if there exist A and B for which S = A∪B, and A and B intersect all of the clauses
and literal sets {xi, xi}, then A and B must both be consistent sets of literals, since, for any
variable xi, neither can possess both xi and xi. Let αA be the assignment over {x1, . . . , xn}
induced by A, and βB the assignment induced by B. Then, β is the complement of α. Moreover,
since both α and β satisfy each clause (since A and B intersect each clause), we see that α is
a ̸=-assignment for C.
Finally, notice that the reduction can be performed in polynomial time, since the number of
sets in Ĉ is m+ n, which is linear in m and n, the size parameters of ̸=-SAT.
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