
Approximation Algorithms

Last Updated: May 6th, 2024

1 Introduction

In the previous lecture we saw how there exist many optimization problems that cannot be solved
in polynomial time. For if the optimization problem is solvable in polynomial time, then so is its
corresponding decision problem, and vice versa. We now return to the study of optimization problems,
and ask if there are polynomimal-time algorithms that can at least provide an approximation of the
optimal solution.

2 Approximation Ratio

Let L be a minimization problem and suppose A is an approximation algorithm for L. Let A(x)
denote the (numerical) value returned by the algorithm on instance x of L, while OPT(x) denotes
the optimal value for instance x. Then the approximation ratio of A is defined as

max
x∈L

A(x)

OPT(x)
.

Similarly, if L is a maximization problem, then the approximation ratio of A is defined as

max
x∈L

OPT(x)

A(x)
.

In the next sections we provide algorithms that give approximation-ratio upper bounds on four
different intractable problems: Minimum Vertex Cover, Clustering, Load Balancing, and TSP.

1

3 An Approximation Algorithm for Minimum Vertex Cover

Consider the following approximation algorithm for the Minimum Vertex Cover optimization problem.
Each step the algorithm randomly selects an edge from the current graph, and adds the edge vertices
to the cover. Indeed, given current graph Gi = (Vi, Ei), at Step i an edge e is selected from Gi. Then
Gi+1 is formed by removing from Gi both vertices u and v that are incident with e, and all edges that
are incident with either u or v. Both u and v are then added to the cover. The algorithm terminates
at Step i iff Ei = ∅. Moreover, the algorithm begins with G1 = G, where G is the input graph.

Example 3.1. Demonstrate the above algorithm on the graph whose edges are

(6, 8), (4, 8), (2, 5), (4, 5), (7, 8), (5, 7), (8, 2), (1, 4), (4, 3), (6, 3), (6, 7), (4, 7), (5, 6), (5, 3), (1, 7), (1, 3)

Compare the size of the minimum cover with that returned by the algorithm.

2

Theorem 3.2. The above algorithm has an approximation ratio equal to 2.

Proof. At each step of the algorithm at least one of the vertices incident with selected edge e must
be in the optimal cover. This is true since every edge of G must be incident with at least one vertex
of the optimal cover. Therefore, since two vertices are added at each step, the worst case is that, at
each step, exactly one of the vertices is not part of the optimal cover, which yields a cover size that is
twice the size of the optimal one. Note that the worst case occurs when G has exactly one edge.

3

In the Greedy-Algorithm lecture one of the exercises considered the following greedy heuristic for
finding a minimum vertex cover. At each step, select the vertex v from Gi having highest degree and
add v to the cover. Then Gi+1 is obtained from Gi by removing v and any edge incident with v.

Theorem 3.3. There is a graph of order Θ(n log n) for which the above greedy heuristic produces a
cover that is a factor Θ(log n) greater in size than the minimum cover.

Proof. Given positive integer n, consider the bipartite graph with vertex set W = {w1, . . . , wn} left
side and vertex sets U1, . . . , Un on the right, where Ui = {ui1 . . . , ui⌊n/i⌋}. For the edges of the graph,
wk is adjacent to uij iff

⌈k/i⌉ = j.

We have the following facts about this graph.

1. The left side has n vertices, while the right side has

n+ ⌊n/2⌋+ ⌊n/3⌋+ · · ·+ ⌊n/n⌋ = Θ(n log n)

vertices.

2. The values of k that satisfy this equation

⌈k/i⌉ = j.

are k = ij, ij − 1, . . . , ij − i+ 1, implying that uij has degree i.

3. Each wk is adjacent to at most one vertex in Ui, since the equation ⌈k/i⌉ = j implies a unique
j value.

4. From Fact 3, for all 1 ≤ i ≤ n, the subgraph induced by vertices W , U1, . . . , Ui is such that
each vertex in W has degree at most i.

5. From Fact 4, if the heuristic breaks ties by selecting vertices from the U sets, then the heuristic
will select all vertices in Un, followed by all vertices in Un−1, etc., all the way down to selecting
vertices from U1. In other words, the heuristic selects Θ(n log n) vertices, yielding a Θ(log n)
approximation ratio.

4

Example 3.4. Verify Theorem 3.3 for n = 4.

5

4 An approximation algorithm for Clustering

4.1 Preliminary definitions

Definition 4.1. A metric space is a pair (X, d), where X is a set of “points” and d : X ×X → R
is a nonnegative function that satisfies the following three properties for all x, y, z ∈ X.

Nonnegative d(x, y) ≥ 0 and d(x, y) = 0 iff x = y

Symmetric d(x, y) = d(y, x)

Triangle Inequality d(x, z) ≤ d(x, y) + d(y, z)

For example, (Rn, d) is a metric space, where Rn is the set of all n-dimensional real-valued vectors,
and d(x⃗, y⃗) denotes the Euclidean distance between x⃗ and y⃗.

Definition 4.2. Given a metric space (X, d) and A ⊆ X, the diameter of A, denoted diam A is
defined as

diam A = sup{d(x, y) | x, y ∈ A},

where supB denotes the least upper bound for a set of numbers B. Note that, in case A is finite,
then

diam A = max
a1,a2∈A

d(a1, a2).

For example, diam {1, . . . , 100} = 100− 1 = 99, while diam {1
2
, 1
4
, 1
8
, . . .} = 1/2.

Given a metrix space (X, d), x ∈ X, and A ⊆ X, we define

d(x,A) = inf{d(x, y) | y ∈ A},

where inf B denotes the greatest lower bound for a set of numbers B

For example, d(0, {1, . . . , 100}) = |0− 1| = 1, while d(0, {1
2
, 1
4
, 1
8
, . . .}) = 0.

Definition 4.3. For k ≥ 1, A k-partition of a set S is a collection C1, . . . , Ck ⊆ S of nonempty
subsets of S that satisfies the two properties

1. Ci ∩ Cj = ∅ for all i ̸= j,

2. C1 ∪ · · · ∪ Ck = S.

For example, {1, . . . , 25}, {26, . . . , 48}, and {49, . . . , 100} is a 3-partition of {1, . . . , 100}.

6

Administrator
Pencil

Definition 4.4. An instance of the Clustering optimization problem is a set of points S =
{x1, . . . , xn} from a metric space (X, d) and a nonnegative integer k ≥ 1. The problem is to determine
k-partition of C1, . . . , Ck for which

max
j

diam Cj

is a minimum amongst all possible k-partititions of S.

Note that the decision version of Clustering is NP-complete.

7

Administrator
Pencil

4.2 The Algorithm

Input: i) set of points S = {x1, . . . , xn} from a metric space (X, d), ii) k ≥ 1.

Ouput: k-partition C1, . . . , Ck.

Initialize P = {x1}.

While |P | < k,

P += {x}, where
x = arg max

y∈S
d(y, P).

//x is the furthest away from the members of P

Initialize C = ∅.

For each x ∈ P

C += Cx, where Cx = {y ∈ S | d(y, x) < d(y, P − {x})
//Cluster Cx contains all points in S that are closer to x than to any other point in P .

Return C

8

Administrator
Pencil

Example 4.5. Draw a random set S of points and apply the algorithm to S and k = 4.

9

Administrator
Pencil

Administrator
Pencil

Theorem 4.6. The Clustering algorithm has an approximation ratio that is bounded by 2.

Proof. We may assume that |S| > k, since other wise the algorithm returns an optimal set of
clusters, each with diameter equal to zero. Let P be the set of centers and consider the point x which
satisfies

x = arg max
y∈S

d(y, P).

In other words, x would be the next center chosen if k + 1 clusters were sought. Let r = d(x, P)
denote the distance from x to the closest center. Then every other point must be within r of a center
since x was chosen to be the furthest from all the centers. Hence, for two points y and z that belong
to a cluster with center c, we have by the triangle inequality

d(y, z) ≤ d(y, c) + d(c, z) ≤ r + r = 2r,

and so every cluster has a diameter at most 2r.

Now that for each pair of points y, z ∈ P ∪ {x}, d(y, z) ≥ r. This is because d(x, P) ≥ r and,
each point y added to P in the while-loop must have satisfied the predicate d(y, P) ≥ r since this
predicate is satisfied by x, but x was never chosen, meaning that, if y was chosen instead, y must
also satisfiy the predicate since the chosen point is the one which maximizes d(, P). Finally, any
k-partition of S must put at least two points from P ∪{x} into the same cluster which thus will have
a diameter of at least r.

10

Administrator
Pencil

5 An approximation algorithm for Load Balancing

An instance of the Load Balancing (LB) optimization problem consists of a positive integer p,
representing the number of processors, and a sequence t1, . . . , tn of times, where ti denotes the
amount of time needed for a processor to process the i th task. Each task is assigned to one of
the processors and the processors work independently and in parallel in an attempt to complete all
the tasks. Then the objective is to minimize the maximum time it takes for any one processor to
complete all its assigned tasks.

We now describe an approximation algorithm for LB. To begin, let

Ttot =
n∑

i=1

ti

denote the sum of all the task processing times. Let η ∈ (0, 1) be a constant, and call a task/time ti
large iff ti ≥ ηTtot, and small otherwise. Note that there are at most 1/η large tasks (why?).

The first step of the approximation algorithm is to determine an optimal load balance in the case
where only the large tasks are processed. Now, since there are a constant number of different ways
to schedule the large tasks, this step can be done in constant time. Note however that this constant

has a maximum value of p
1
η which can become very large when η is small.

The final step is to assign each of the small tasks, where the next small task is assigned to the
processor that currently has been assigned the smallest load. Thus, the final step makes use of a
greedy heuristic.

11

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Example 5.1. Demonstrate the approximation algorithm for LB using the following tasks with p = 3
processors and η = 1/12.

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Duration 1 7 7 6 7 8 6 2 8 10 4 5 10 9 6

12

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Theorem 5.2. The above described algorithm provides a (1 + η(p − 1))-approximation for Load
Balancing.

Proof. Let Mopt denote the optimal finish time for the last processor that completes its tasks. Let
Ml denote the optimal finish time when only large tasks are scheduled. Note that, when adding
the small tasks, if the latest processor finish time is not increased, then necessarily Mopt = Ml and
the algorithm returns an optimal solution. So assume that the latest finish time equals M and that
M > Ml. Let Ti denote the finish time of processor i after the final step. Without loss of generality,
assume T1 ≥ · · · ≥ Tp. Then at least one small task must have been added to T1 (why?). Let t
denote the processing time for the last small task that was added to processor 1. Then, at the time
this task was assigned, it must have been true that

M ≥ Tj ≥ M − t

for all j = 2, . . . , p. Moreover, since t < ηTtot, we have

Ttot = M +

p∑
i=2

Ti ≥ M + (p− 1)(M − t) = pM − (p− 1)t ≥ pM − (p− 1)ηTtot.

Moreover, solving for M yields the inequality

M ≤ Ttot
p

(1 + η(p− 1)).

But, we also know that

Mopt ≥
Ttot
p

,

since the righthand side represents the best-case scenario in which tasks are divided equally (in terms
of processing time) by each of the processors and all processors work the same amount of time, and
with no idle time. Thus,

M ≤ Mopt(1 + η(p− 1))

which proves the theorem. Note also that M ≥ pMopt (why?), and so the two inequalities can be
combined to get

p ≤ M

Mopt
≤ (1 + η(p− 1)).

The LB approximation algorithm above is what is called a polynomial-time approximation
scheme (pas), since for every ϵ > 0 we can adjust the value of η to η = ϵ(p − 1) so that
M ≤ (1 + ϵ)Mopt. Moreover, a fully polynomial-time approximation scheme (fpas) means
that the algorithm runs in time polynomial with respect to the size of the problem, and with respect
to 1/ϵ. The above algorithm is not an fpas, since the first step of the algorithm requires time p1/η,
and so grows exponentially with respect to 1/η which is proportional to 1/ϵ.

13

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

6 An approximation algorithm for Traveling Salesperson

Recall that an input to the Traveling Salesperson (TSP) optimization problem is a complete weighted
graph G = (V,E, c), and the problem is to find a Hamilton cycle whose edge weights sum to a
minimum value. We first prove the following.

Theorem 6.1. If there is a polynomial-time ρ-approximation algorithm for TSP, then P = NP.

Proof. Suppose there is a polynomial-time ρ-approximation algorithm A for TSP. Let G = (V,E) be
a simple graph. To decide if G has a Hamilton cycle, we define the weighted graph G′ = (V,E∪E, c),
where

c(e) =

{
1 if e ∈ E
1 + 1.5ρn otherwise

where n = |V |. Then G has a Hamilton cycle iff G′ has a cycle with minimum weight sum equal to
n. Otherwise, the minimum weight sum of any Hamilton cycle is at least

n+ 1.5ρn = n(1 + 1.5ρ).

Thus, a polynomial-time ρ-approximation algorithm A would be able to distinguish between the two
cases. For example, if G has a Hamilton Cycle, then we must have

A(G′) ≤ (1 + ρ)n < (1 + 1.5ρ)n.

Inversely, if G does not have a Hamilton Cycle, then

A(G′) ≥ (1 + 1.5ρ)n

since the optimal solution cannot be lower than this value.

ThusG has a Hamilton cycle iffA(G′) returns a value not exceeding (1+ρ)n, which implies HC ∈ P via
A. But if an NP-complete problem is in P, then so is every other NP problem. Therefore, P = NP.

14

Administrator
Pencil

Administrator
Pencil

It turns out that we can do better if we assume that the vertices of G lie in a metric space.

The following proposition provides the key idea behind the 2-approximation algorithm described
below. We leave its proof as an exercise.

Proposition 6.2. Let G be a complete weighted graph whose edge weights satisfy the triangle
inequality. Then given a path P = i1, . . . , in, n ≥ 2, we have

d(i1, in) ≤
n−1∑
j=1

d(ij, ij+1).

The following algorithm may be used to obtain a 2-approximation for TSP, assuming the input graph
G’s edge weights satisfy the triangle inequality. First note that, if T is a minimum spanning tree for
G, then the minimum-cost tour is at least equal to the cost of T . This is because any tour forms
a single branch (and perhaps non-optimal) spanning tree from the start vertex to the final vertex.
Moreover, the tour incurs the additional cost of returning to the start vertex from the final vertex.
Now consider a path P that traverses only edges of T , visits every vertex (perhaps more than once),
and returns to the start vertex. This can be accomplished by treating the start vertex as the root of
T , performing a depth-first traversal along T , and eventually returning to the root vertex. The key
observation about this depth-first traversal is that each tree edge is traversed exactly twice. Thus,
the cost of P is twice the cost of T . Thus, P provides a 2-approximation of the minimum cost, but
unfortunately P is not a Hamilton cycle. However, P can be converted to a Hamilton cycle without
increasing the tour cost! To convert P to a Hamilton cycle, suppose i1, . . . , ik, k ≥ 3, is a subpath of
P for which

1. vertex i1 is making its first appearance in P ,

2. vertices i2, . . . , ik−1 have already been visited in P , and

3. either ik has yet to be visited in P , or ik is the final vertex of P (and hence equals the start/root
vertex).

Then we may replace the edges (i1, i2), . . . , (ik−1, ik) with the edge (i1, ik), and, by Theorem 5, we
have

d(i1, ik) ≤
k−1∑
j=1

d(ij, ij+1),

and so the revised path is no more costly than the original one. Finally, repeatedly replacing these
subpaths eventually results in a Hamilton cycle which is a 2-approximation of the optimal Hamilton
cycle.

15

Administrator
Pencil

Example 6.3. Suppose G is a weighted complete graph with vertex set V = {1, . . . , 9}, and for
which a minimum spanning tree is shown below. Assuming the depth-first traversal visits children in
the order from left to right, determine the Hamilton cycle produced by the above 2-approximation
algorithm for TSP.

3

1

9

5 7 2

4

8

6

16

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

An improved TSP approximation algorithm

Given a complete weighted graph G = (V,E, c), Christophides’s algorithm also uses a minimum-
spanning tree T as the basis for an approximation algorithm for TSP. However, instead of performing
a depth-first traversal on T , his algorithm instead adds edges to T so that every vertex has even
degree. Moreover, since there are an even number of odd-degree vertices, this can be accomplished
in polynomial time by finding a minimum-cost matching M over the odd-degree vertices of T . Let
U = {u1, . . . , ut} denote the odd-degree vertices of T , and GU denote the subgraph of G that is
induced by U . Then M is a minimum-cost matching for GU .

Now, once the M -edges have been added, one can perform an Euler tour, and then convert that
tour to a Hamilton cycle by skipping already-visited vertices, as was done in the previous algorithm.
Futhermore the cost of this cycle is no more than cost(T) + cost(M). From the previous algorithm
we already know that cost(T) ≤ Copt, where Copt is the minimum cost of any TSP tour. What

about cost(M)? Consider a tour of GU that uses the min-cost TSP tour of G, but skips all vertices
that are not in U , then this tour cost does not exceed Copt. Without loss of generality, assume that

u1, u2 . . . , ut−1, ut, u1

is such a tour. Then this tour consists of two different matchings forGU , namelyM1 = {(u1, u2), . . . , (ut−1, ut)},
and M2 = {(u2, u3), . . . , (ut, u1)}. Thus, since

cost(M1) + cost(M2) ≤ Copt,

and M is a minimum-cost matching for GU , it follows that

cost(M) ≤ min(cost(M1), cost(M2)) ≤ Copt/2,

where the last inequality is due to the arithmetic fact that, if two numbers sum to a third number,
then one of the two numbers in the sum cannot exceed one-half of the sum. Therefore

cost(T) + cost(M) ≤ 3/2Copt,

and Christophides’s algorithm is a 3/2-approximation algorithm for TSP.

17

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Example 6.4. A delivery truck starts at intersection (0, 0), and must deliver packages to intersections

(4, 1), (2, 3), (5, 3), (0, 5), (2, 6), (4, 7), (6, 7), (3, 9), and (0, 9).

Provide two tours for the driver, using the 2-approximation and 3/2-approximation algorithms,
respectively. Compute the cost of each tour. Assume that vertex distances are measured via
horizontal and vertical movement along the city grid, and that each grid segment takes unit time to
traverse.

18

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Exercises.

1. Prove Theorem 5. Hint: use induction.

19

Exercise Hints and Answers.

1. The proof is by induction on n ≥ 2. The statement is trivial for n = 2, and is a re-statement of
the triangle inequality for n = 3. Now assume it is true for any path that traverses n−1 vertices,
where n ≥ 4, and consider path P = i1, . . . , in−1, in. Then, by the inductive assumption, we
have

d(i1, in−1) ≤
n−2∑
j=1

d(ij, ij+1).

Thus, by the triangle inequality,

d(i1, in) ≤ d(i1, in−1) + d(in−1, in) ≤
n−2∑
j=1

d(ij, ij+1) + d(in−1, in) =
n−1∑
j=1

d(ij, ij+1),

and the theorem is proved.

20

