
Turing Reducibility

Last Updated: April 16th, 2023

1 Introduction

A common technique in everyday problem solving is to leverage the solution to one problem in order
to solve another. For example, consider our friend Sam who must solve the problem of earning enough
money to help support his way through college. One possible solution that Sam has considered is to
work part-time delivering food for DoorDash. This solution would leverage the fact that he’s already
solved the problem of driving a vehicle from any one city location to another. Sam will likely have to
solve tens of transport problems during a single work shift. In computer science, when an algorithm
solves an instance of problem A by making one or more invocations to another algorithm that solves
some problem B, then we say that A is Turing reducible to B, named after the British mathematician
Alan Turing (1912-1954) who provided one of the earliest known theoretical models of computation
that is functionally equivalent to the computers we use today (so long as our computers are idealized
as having an infinite supply of memory). In this lecture we take a closer look at Turing reducibility
and how it can be used as a means for devising algorithms.

1

2 Turing Reducibility

An important tool for desigining an algorithm to solve a problem A is to leverage an existing algorithm
that solves another problem B by calling that algorithm one or more times for different instances of
B in order to solve a single instance of A.

Example 2.1. Consider the problem of multiplying two positive numbers, say 5 and 3. Marcia is
still learning the multiplication table, but she performs well in addition, and also knows that 5 × 3
means (5 + 5) + 5. Thus, she first solves the addition problem 5 + 5 and gets the answer 10. She
then solves the final addition problem, 10 + 5 to obtain the answer of 15.

The following function returns the product of its two inputs by making calls to an add function that
returns the sum of its two inputs. It essentially generalizes Marcia’s solving method.

unsigned int multiply(unsigned int a, unsigned int b)

{

int sum = 0;

int i;

for(i=1; i <= b; i = add(i,1))

sum = add(sum,a);

return sum;

}

2

In Example 2.1, Marcia reduced the Multiply problem to the Add problem. In other words, she de-
vised an algorithm for multiplying two numbers that relies on solving one or more addition problems.
Moreover, whenever the answer to an instance of Add is being sought to help solve an instance of
Multiply, then we say that Multiply is making a query to the Add-oracle, i.e., an entity that is
capable of providing solutions to instances of Add. The answer provided by the oracle is called a
query answer. Note that the algorithm that is making queries to an oracle does not necessarily need
to know how the oracle is providing its answers. In case of the multiply function in Example 2.1,
the function just assumes that each add query will be correctly answered with no concern about how
the answer is obtained. In fact, the oracle may provide answers to instances of a problem for which
it is impossible to devise an algorithm for solving it.

Definition 2.2. Problem A is Turing reducible to problem B, denoted A ≤T B, iff there is some
algorithm that can solve any instance x of A, and is allowed to make zero or more queries to a
B-oracle, i.e. an oracle that provides solutions to instances of B.

Definition 2.3. If A ≤T B via an algorithm whose running time O(nk), for some k > 0, then A

is said to be polynomial-time Turing reducible to B, denoted A ≤p
T B. Note: this definition

assumes that each B-query is answered in one step.

Interesting fact: the term oracle comes from ancient Greece, where the “oracle at Delphi” meant a
high priestess who resided in a sanctuary located on Mt. Parnassus, and gave predictions and advice
to both statesmen and citizens.

3

3 The Reachability problem

In the remainder of this lecture we provide two examples of polynomial-time Turing reducibility from
both the 2SAT and Max Flow problems to the Reachability decision problem.

Definition 3.1. An instance of the Reachability problem is a graph G = (V,E) and vertices
u, v ∈ V , and the problem is decide if there is a path in G from u to v.

The following algorithm decides Reachability and has a linear running time equal to O(m + n),
where m = |E| and n = |V |.

Reachability Algorithm

Input: G = (V,E), u, v ∈ V .

Output: true iff there is a path from u to v.

If u = v, then return true.

Initialize FIFO queue Q with u: Q← (u).

Mark u as having been reached.

While Q 6= ()

Remove vertex w from the front of Q: Q← Q−Q[0].

For each edge (w, x) ∈ E
If x is unmarked, then mark x and enter x into Q: Q← Q+ (x).

If v is marked, then return true.

Return false.

4

Theorem 3.2. The Reachability Algorithm is correct and has the stated running time equal to
O(m+ n).

Proof. We claim that, for all i ≥ 0, if there is a path from u to x having length i, then x gets marked
during the algorithm.

Basis step. Assume i = 0. Then necessarily x = u which gets marked before entering the while

loop.

Inductive step. Assume the claim is true for some i ≥ 0. Consider a path from u to x having
length i + 1. Let w be the vertex that immediately precedes x in the path. Then there is a path
from u to w having length i. By the inductive assumption, vertex w gets marked and added to Q.
Thus, there will be a step in the algorithm where w is removed from Q and edge (w, x) ∈ E will be
examined. At this point x gets marked in case it has yet to be marked.

The above inductive proof shows that, if v is reachable from u, then the algorithm returns true,
since there is a path from u to v. Conversely, we leave it as an exercise to prove that, if a vertex gets
marked during the algorithm, then that vertex must be reachable from u (hint: use induction).

Running Time. To see that the algorithm runs in linear time, notice that the while loop requires
at most n iterations and, assuming an undirected graph, each edge (w, x) in G must be considered
at most twice: once if w is removed from Q, and a second time if x is removed from Q. Thus, the
total number of steps equals O(2m+ n) = O(m+ n).

5

Example 3.3. Show the contents of the queue Q during the execution of the above algorithm on
the graph G = (V,E), where

V = {a, b, c, d, e, f, g, h}

and the edges are given by

E = {(a, b), (a, c), (b, c), (b, d), (b, e), (b, g), (c, g), (c, f),

(d, f), (f, g), (f, h), (g, h)}.

Decide if h is reachable from a.

6

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

4 Boolean Variable Assignments

Before introducing the 2SAT decision problem, we need to understand the concept of a Boolean
variable assignment.

Boolean Variable A variable is said to be Boolean iff its domain equal {0, 1}. We use lowercase
letters, such as x, y, z, x1, x2, . . ., etc., to denote a Boolean variable.

Assignment An assignment over a Boolean-variable set V is a function α : V → {0, 1} that
assigns to each variable x ∈ V a value in {0, 1}. We may represent α using function notation,
or as a labeled tuple.

Example: for the assignment α that assigns 1 to both x1 and x2, and 0 to x3, we may use
function notation and write α(x1) = 1, α(x2) = 1, and α(x3) = 0, or we may use tuple notation
and write

α = (x1 = 1, x2 = 1, x3 = 0),

or
α = (1, 1, 0),

if the associated variables are understood.

Variable Negation If x is a variable, then x is called its negation.

Example: Suppose assignment α satisfies α(x1) = 0. Then (extending α to include negation
inputs) α(x1) = 1.

Literal A literal is either a variable or the negation of a variable .

Example: x1, x3, x3, are x5 all examples of literals.

Consistent A set R of literals is called consistent iff no variable and its negation are both in R.
Otherwise, R is said to be inconsistent.

Example: {x1, x2, x4, x7, x9} is a consistent set, but {x1, x2, x4, x7, x7} is an inconsistent set.

Induced Assignment If R = {l1, . . . , ln} is a consistent set of literals, then αR is called the (par-
tial) assignment induced by R and is defined by α(li) = 1 for all li ∈ R.

Example: the assignment induced by R = {x1, x2, x4, x7, x9} is

α = (x1 = 1, x2 = 0, x4 = 1, x7 = 0, x9 = 0).

7

Administrator
Pencil

5 The 2SAT decision problem

In this section we introduce the 2SAT decision problem and show it is polynomial-time Turing re-
ducible to Reachability. Afterwards, we improve the algorithm so that it no longer makes explicit
queries to Reachability.

Definition 5.1. A binary disjunctive clause is a Boolean formula of the form

l1 ∨ l2,

where l1 and l2 are literals. The clause evaluates to 1 in case either l1 or l2 (or both) is assigned 1.

Definition 5.2. An instance of the 2SAT decision problem consists of a set C of binary disjunctive
clauses. The problem is to decide if there is an assignment α over the variables in C, such that every
clause (l1 ∨ l2) in C evaluates to 1 under α. If such an assignment α exists, then it is said to be
a satisfying assignment and we say C is satisfiable. Otherwise, C is said to be unsatisfiable.
Finally, the 2SAT decision problem is the problem of deciding whether a set C of clauses is sastisfiable.

Simplified clause notation. In what follows, we often simplify the clause notation by writing each
clause (l1 ∨ l2) as (l1, l2).

8

Administrator
Pencil

Example 5.3. Provide a satisfying assignment for

C = {(x2, x3), (x1, x2), (x3, x4), (x2, x3), (x1, x4)}.

9

Administrator
Pencil

We now demonstrate how to Turing reduce 2SAT to Reachability, meaning that we can solve an
instance of 2SAT by making queries to a Reachability-oracle.

Definition 5.4. Let C be an instance of 2SAT, and defined over the variables x1, x2, . . . , xn. Then
the implication graph of C is defined as the directed graph GC = (V,E), where

V = {x1, x2, . . . , xn, x1, x2, . . . , xn}

and each clause (l1 ∨ l2) produces the two directed edges (l1, l2), (l2, l1) ∈ E.

The idea behind the two edges formed from clause c = (l1 ∨ l2) is that c is logically equivalent to
both the implication l1 → l2 and its contrapositive l2 → l1. Thus, for each edge (l1, l2) of GC, when
l1 is assumed true, then l2 must also be true. This is so because (l1, l2) corresponds with the clause
(l1 ∨ l2) and the truth of l1 forces the truth of l2, since, according to the clause, either l1 must be
false or l2 must be true.

10

Administrator
Pencil

Example 5.5. Verify that l1 ∨ l2 is logically equivalent to both l1 → l2 and l2 → l1.

Solution.

11

Administrator
Pencil

Example 5.6. Draw the implication graph for the set C of clauses listed in the following table.

Clause Implication Contrapositive
(x2, x4) x2 → x4 x4 → x2

(x2, x3) x2 → x3 x3 → x2

(x2, x3) x2 → x3 x3 → x2

(x2, x3) x2 → x3 x3 → x2

(x2, x4) x2 → x4 x4 → x2

(x1, x4) x1 → x4 x4 → x1

x1 x2 x3 x4

x1 x2 x3 x4

Implication Graph GC

12

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Given the correspondence of a 2SAT instance C with an implication graph GC whose number of vertices
is twice the number n of variables, and whose number of edges is twice the number m of clauses, it
seems appropriate to let m = |C| and n represent the size parameters for 2SAT.

Proposition 5.7. Given implication graph GC and path

P = l1, . . . , ln,

in GC, there is another path, called the contrapositive of P :

P = ln, . . . , l1.

Proof. If (x, y) is an edge of GC, then so is its contrapositive (y, x). Thus, every edge in a path from
l1 to ln corresponds with its contrapositive in the path from ln to l1.

Theorem 5.8. 2SAT instance C is satisfiable iff there does not exist an inconsistent cycle in GC,
i.e. a cycle that contains a variable and its negation.

Before proving Theorem 5.8, we use it to provide an algorithm showing that 2SAT can be polynomial-
time Turing reduced to Reachability by making at most 2n queries. The algorithm uses the
observation that an inconsistent cycle that includes x and x is equivalent to two paths: one from x
to x, and another from x to x. Thus, checking if GC has an inconsistent cycle that includes x and x
can be done with two queries to a Reachability-oracle.

2SAT Algorithm

Input: 2SAT instance C.

Ouput: true iff C is satisfiable.

Construct GC.

For each x ∈ var(C),

If reachable(GC, x, x) and reachable(GC, x, x), then return false.

Return true.

13

Example 5.9. Consider a 2SAT instance C for which GC has the cycle

C = x1, x3, x5, x1, x2, x1.

Verify that C is unsatisfiable.

14

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

The following proposition provides the key to finding a satisfying assignment for 2SAT instance C in
case all of GC’s cycles are consistent. It relies on the notion of a reachability set for a graph vertex.

Definition 5.10. Let G = (V,E) be a graph and v ∈ V a vertex of G. Then the reachability set
of v in G is the set of all vertices that can be reached by v along some path (regardless of its length).

Example 5.11. Verify that the reachability set for vertex x2 of the implication graph in Example 5.6
is equal to

R = {x2, x3, x3, x4, x2, x1}.

Is R a consistent or inconsistent set of literals?

x1 x2 x3 x4

x1 x2 x3 x4

15

Administrator
Pencil

Proposition 5.12. Given 2SAT instance C, implication graph GC, and vertex/literal l, if Rl, the
reachability set of l, does not contain l, then the following statements are true.

1. Rl is a consistent set of literals.

2. Assignment αRl
satisfies every clause in C that depends on at least one variable assigned by

αRl
.

Proof of Statement 1: By way of contradiction, assume there is a variable x for which x ∈ Rl and
x ∈ Rl. Then there is a path P1 from l to x and a path P2 from l to x. Hence, P1 · P 2 (i.e. the
concatenation of P1 with the contrapositive of P2) yields a path from x to x, a contradiction.

Proof of Statement 2: Consider a clause c = (l1, l2) of C for which either i) l1 ∈ Rl, ii) l2 ∈ Rl,
iii) l1 ∈ Rl, or iv) l2 ∈ Rl. If either i) or ii) is true, then c is satisfied by αRl

, since any literal in R
is assigned 1 by αR. Now suppose iii) is true (case iv is identical). By the definition of GC, clause c
contributes the edge

(l1, l2).

Thus, since l1 is reachable from l, so is l2, and c is satisfied by αRl
since l2 is assigned 1 by αR1 .

Hence, αRl
satisfies any clause that contains a literal l′ for which either l′ ∈ Rl or l′ ∈ Rl.

16

Example 5.13. For the implication graph below, verify that the reachability set for vertex x1
contains both x2 and x2, and so it must also contain x1.

x1 x2 x3 x4

x1 x2 x3 x4

17

Administrator
Pencil

Administrator
Pencil

Example 5.14. Verify that the reachability set for vertex x4 of the implication graph in Example 5.6
is equal to the consistent set

R = {x4, x1},

and show that αR satisfies all clauses of C that use one of the variables from R.

Clause Implication Contrapositive
(x2, x4) x2 → x4 x4 → x2

(x2, x3) x2 → x3 x3 → x2

(x2, x3) x2 → x3 x3 → x2

(x2, x3) x2 → x3 x3 → x2

(x2, x4) x2 → x4 x4 → x2

(x1, x4) x1 → x4 x4 → x1

x1 x2 x3 x4

x1 x2 x3 x4

18

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Proof of Theorem 5.8. The statement of the theorem is of the form P ↔ Q, where P stands for
“C is satisfiable”, and Q stands “GC has only consistent cycles”. We can thus break it down to two
different statements: P → Q and Q→ P .

We first prove P → Q via an indirect proof. Assume ¬Q: “GC has an inconsistent cycle”. Show
¬P : C is unsatisfiable. To this end, assume that there exists a variable x such that x is reachable
from x and x is reachable from x in the implication graph GC. Then there are edge sequences in GC
of the form

(x, l1), (l1, l2), . . . , (lr−1, lr), (lr, x)

and
(x, l̂1), (l̂1, l̂2), . . . , (l̂s−1, l̂s), (l̂s, x).

The first edge sequence implies that C is not satisfiable when x is assigned to 1. For example,
(x, l1) ∈ E implies that either (x, l1) or (l1, x) is a literal of C. Then the assignment of 1 to x forces
an assignment of 1 to l1. Similar reasoning shows that this in turn forces an assignment of 1 to
l2, and, using this reasoning through the entire edge sequence, we see that lr is forced to have an
assignment of 1. But edge (lr, x) corresponds with the literal (lr, x). And if lr is forced to 1, then
this literal cannot be satisifed, since x was already assigned 1. Hence, no satisfying assignment for
C can assign x to 1. A similar argument using the second edge sequence shows that no satisfying
assignment for C can assign x to 0. Therefore, C is unsatisfiable.

We now prove Q→ P using a direct proof and mathematical induction. Assume Q: “GC has only
consistent cycles”. Show P : C is satisfiable. We show G is satisfiable by induction on the number n
of variables appearing in C.

Basis Step. C has one variable x. Since there are no inconsistent cycles with both x and x it must
be the case that C either consists of the single clause (x, x), or of the single clause (x, x). In either
case C is satisfiable.

Induction Step. Assume that any 2SAT instance having n−1 or fewer variables and only consistent
cycles in its implication graph is satisfiable, for some n ≥ 2. Let C be an instance with n variables
and only consistent cycles. Then there must be a literal l for which there is no path from l to l. By
Proposition 5.12 Rl is consistent and αRl

satisfies every clause that has a variable that gets assigned
by αRl

.

Now let CRl
denote the set of clauses satisfied by αRl

. Then consider the new 2SAT instance C ′ =
C −CRl

that is the result of removing the clauses in CRl
from C. Then C ′ has fewer than n variables,

and since G′C is a subgraph of GC, it follows that G′C has only consistent cycles. Therefore, by the
inductive assumption, C ′ is satisfiable. FInally, if α′ is a satisfying assignment for C ′, then α′ ∪ αR

satisfies C.

19

The proof of Theorem 5.8 suggests the following recursive algorithm for determining the satisfiability
of 2SAT instance C. The algorithm returns a non-empty satisfying assignment if C is satisfiable, and
returns ∅ otherwise.

Improved 2SAT Algorithm

Name: sat2

Input: 2SAT instance C and a pointer α to an assignment (initially, ∅).

Output: true iff C is satisfiable.

Side Effect: if C is satisfiable, then α points to a sat assignment. Otherwise, α← ∅.

//Base Case:

If C = ∅, return true. //an empty set of clauses is considered satisfied

//Recursive case:

Construct GC.

Choose a literal l and compute R, the set of literals reachable from l.

If R is consistent,

Update α: α← α ∪ αR.

C ′ ← C − CR, where CR denotes all clauses satisfied by αR.

Return sat2(C ′, α).

Else

Compute R, the set of literals reachable from l.

If R is consistent,

Update α: α← α ∪ αR.

C ′ ← C − CR, where CR denotes all clauses satisfied by αR.

Return sat2(C ′, α).

Else

α← ∅.
Return false.

By modifying the algorithm so that the steps needed to compute each reachability set (for l and l)
are alternated, we can guarantee that the total work performed is at most O(m+ n) steps.

20

Example 5.15. Use the improved 2SAT algorithm to determine a satisfying assignment for

C = {(x2, x3), (x1, x2), (x3, x4), (x2, x3), (x1, x4), (x5, x6), (x5, x6), (x1, x6)}.

Start off by choosing l = x1.

Solution.

1. Compute the edges for GC.

Clause Edges
(x2, x3) x2 → x3, x3 → x2
(x1, x2) x1 → x2, x2 → x1
(x3, x4) x3 → x4, x4 → x3
(x2, x3) x2 → x3, x3 → x2
(x1, x4) x1 → x4, x4 → x1
(x5, x6) x5 → x6, x6 → x5
(x5, x6) x5 → x6, x6 → x5
(x1, x6) x1 → x6, x6 → x1

2. Draw the implication graph

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

3. Compute Rx1 = {x1, x1, x2, x2, x3, x3, x4, x4, x5, x6} which is inconsistent.

4. Compute Rx1 = {x1, x2, x3x4} which is consistent. Verify that

αRx1
= (x1 = 0, x2 = 0, x3 = 0, x4 = 1)

satisfies all clauses that involve variables x1, x2, x3, x4.

21

5. Draw the reduced implication graph GC′ where C ′ = {(x5, x6), (x5, x6)}.

x5 x6

x5 x6

6. Compute Rx5 = {x5, x6} which is consistent. Verify that αRx5
= (x5 = 1, x6 = 0) satisfies both

clauses in C ′.

7. Final satisfying assignment:

α = αRx1
∪ αRx5

= (x1 = 0, x2 = 0, x3 = 0, x4 = 1, x5 = 1, x6 = 0).

22

6 Finding Maximum Network Flows

Network Flow

Let G = (V,E, c, s, t) be a directed network, where c : E → R+ determines the capacity of each
edge, s ∈ V is the designated source vertex and t ∈ V is the designated destination vertex.
Throughout this section we use the convention of not drawing a graph edge in case it’s capacity
equals zero. A flow through the network is a function f : E → R+ with the following properties:

1. For every e ∈ E, f(e) ≤ c(e). In other words, the flow through an edge should not exceed the
edge’s capacity.

2. For every vertex v, let E+(v) equal the set of edges that end at v, and E−(v) the set of edges
that start at v. Then for every intermediate vertex v ∈ V − {s, t}, we have∑

e∈E+(v)

f(e) =
∑

e∈E−(v)

f(e).

In other words, the total flow entering an intermediate vertex v must equal the total flow leaving
v. Any vertex that has the above property is said to be flow conserving.

23

Example 6.1. For the directed network below, the left edge label is the edge capacity, while the
right edge-label is the flow value for a flow f .

s

a

b

t

3,
0

4,4

4,4

3,
0

5,4

24

Administrator
Pencil

The size of a flow f through a network, denoted s(f), is defined as

s(f) =
∑

e∈E−(s)

f(e),

and represents the total flow that is leaving source s. For the flow f in Example 6.1 we have
s(f) = 0 + 4 = 4.

An instance of the Max Flow optimization problem is a directed network G = (V,E, c, s, t) and the
problem is to find the size of the maximum flow f , i.e., the size of a flow f for which s(f) ≥ s(f ′)
for all other flows f ′.

We now describe the Ford-Fulkerson algorithm that is used for finding a maximum flow for a
network. The algorithm is quite relevant to the topic of Turing reducibility since, like the 2SAT

algorithm, it works by making a sequence of queries to a Reachability-oracle. However, each query
answer will provide an actual path in case the query answer is yes. It’s this path that will be used
to improve the existing network flow.

Given network G = (V,E, c, s, t) and flow f through G, the key idea behind the algorithm is to define
the residual network Gf . with respect to G and f , where Gf = (V,E ′, c′, s, t) is defined once E ′

and c′ are defined as follows. Let e = (u, v) ∈ E ′ be given. Then one of the following must be true.

1. e ∈ E and f(e) < c(e). In this case we refer to e as a forward edge since it belongs to
the original network. Moreover, its capacity c′(e) = c(e) − f(e) equals the remaining unused
capacity of e.

2. er = (v, u) ∈ E and f(er) > 0. In this case we refer to e as a backward edge because it is
oriented in the opposite direction as er ∈ E. Moreover, its capacity c′(e) = f(er) equals the
amount of flow passing through er and thus is the amount of flow that can be redirected away
from er.

25

Administrator
Pencil

Example 6.2. The network below is the residual network Gf for the network G and flow f shown
in Example 6.1.

s

a

b

t

3

4

4

3

14

26

Administrator
Pencil

The following theorem establishes how the residual network Gf is used to i) determine whether f is
a maximum flow for G and ii) obtain a larger flow in case f is not a maximum flow.

Theorem 6.3. Given network G = (V,E, c, s, t) and flow f through G, f is a maximum flow iff t is
not reachable from s in Gf . In case t is reachable from s via some augmenting path P , and letting
κ equal the minimum capacity of any edge traversed by P , then a new flow ∆(f, P) may be defined
through G as follows. For each e ∈ E,

∆(f, P)(e) =


f(e) + κ if e traversed by P
f(e)− κ if er traversed by P
f(e) otherwise

Note: recall that er refers to the backward edge associated with network edge e ∈ E. In other words,
if e = (u, v), then er = (v, u).

Before proving Theorem 6.3, we summarize how to obtain the new flow ∆(f, P) from the existing
flow f and augmenting path P .

1. If e ∈ E is a forward edge traversed by P , then add κ units of flow to e.

2. If e ∈ E and backward edge er is traversed by P , then subtract κ units of flow from e.

3. if neither e ∈ E nor its backward version er is traversed by P , then do not change the flow
through e.

Proof. The statement being asserted by Theorem 6.3 has the form Q↔ R, where Q is the statement
“f is a maximum flow”, and R is the statement “t is not reachable from s in Gf”.

We first prove Q→ R using an indirect proof. Assume R: t is reachable from s via some path P and
let κ denote the minimum capacity of any edge traversed by P . Prove Q: f ′ = ∆(f, P), as defined
in the theorem, is a flow for G that exceeds f . To this end we first must show that, for all e ∈ E,

0 ≤ f ′(e) ≤ c(e).

Case 1: e is traversed in P . Then 0 ≤ f ′(e) = f(e) + κ ≤ f(e) + (c(e)− f(e)) = c(e).

Case 2: er is traversed in P . Then c(e) ≥ f ′(e) = f(e)− κ ≥ f(e)− f(e)) ≥ 0.

Case 3: neither e nor er is traversed by P . Then 0 ≤ f ′(e) ≤ c(e) since f ′(e) = f(e), and we are
assuming that f(e) satisfies these inequalities since it is a known flow.

Lastly, we must show that all vertices in V − {s, t} remain flow-conserving with respect to f ′. The
only vertices for which the total flow entering and leaving a vertex may have changed are those
internal vertices that are visited by P . Let v be such a vertex and let ein (respectively, eout) be
the edge traversed by P that enters (respectively, leaves) v. Then there are four cases to consider
depending on orientation (forward or backwards) of both edges.

27

Case 1: ein and eout are both forward edges. Then ein, eout ∈ E which means P sends an additional
κ units of flow both into and out of v, and so flow is conserved.

Case 2: ein and eout are both backward edges. Then erin, e
r
out ∈ E which means P removes κ units of

flow from ein that was leaving v and κ units of flow from eout that was entering v, and so flow
is conserved.

Case 3: ein is a forward edge and eout is a backward edge. Then ein, e
r
out ∈ E which means P sends

an additional κ units of flow into v via ein and removes from erout κ units of flow that was
entering v, and so flow is conserved.

Case 4: ein is a backward edge and eout is a forward edge. Then erin, eout ∈ E which means P removes
κ units of flow from erin that was leaving v and adds κ units of flow to eout that is leaving v.
In other words, κ units of flow from v have been re-directed from erin to eout, and so flow is
conserved.

We now turn our attention to proving R → Q using an indirect proof. Assume Q: f is not a
maximum flow for G. Prove R: t is reachable from s. Since f is not maximum, there exists a flow g
for G with s(g) > s(f). We use g to define a positive flow δ over the residual network Gf . Let e ∈ E
be an edge of both G and Gf . Thus, e is a forward edge in Gf and we let er denote its associated
backward edge. We now define δ as follows.

1. if f(e) = g(e), then δ(e) = δ(er) = 0,

2. if f(e) > g(e), then δ(e) = 0, while δ(er) = f(e)− g(e), and

3. if f(e) < g(e), then δ(er) = 0, while δ(e) = g(e)− f(e).

We leave it as an exercise to check that δ obeys the edge-capacity limits defined by Gf . Moreover,
let v ∈ V − {s, t} be an intermediate vertex of Gf . We also leave it as an exercise to check that∑

e∈E+(v)

δ(e) =
∑

e∈E−(v)

δ(e).

Finally, since s(g) > s(f), it follows that s(δ) > 0 over Gf . Thus δ is a positve flow over Gf , and, by
Exercise 19, there is a path from s to t in Gf , i.e., t is reachable from s.

28

We now summarize the Ford-Fulkerson algorithm for finding a maximum flow for a network.

Ford-Fulkerson Algorithm

Input network G = (V,E, f, s, t).

Initialize flow f , where f(e) = 0, for all e ∈ E.

While reachable(Gf , s, t) is true,

Let P be a path from s to t in Gf .

Update f : f ← ∆(f, P).

Return f .

29

Example 6.4. Starting with the flow f provided in Example 6.1, use the Ford-Fulkerson algorithm
to find a maximum flow for G provided in the example.

Solution. Based on the resisual graph Gf shown in Example 6.2. We see that t is reachable from s
via path P = s, a, b, t, and for which κ = min(3, 4, 3) = 3. The following graph now shows G with
flow f2 = ∆(f, P). The changes made from f to f2 can be described by following P : add 3 units to
(s, a), remove 3 units from (b, a), and add 3 units to (b, t).

s

a

b

t

3,
3

4,4

4,4

3,
3

5,1

30

Administrator
Pencil

We now provide Gf2 which shows that t is not reachable from s. Therefore, f2 is a maximum flow
for G.

s

a

b

t

3

4

4

3

41

For the running time of this algorithm, one can show that, if each augmenting path is obtained via a
breadth-first traversal of Gf starting at s, then the maximum flow can be obtained in O(nm2) steps.
Also, there do exist better algorithms for solving Max Flow, including one that requires O(n3) steps.

31

a d

s b e t

c f
10

,5

9,9

3,3

3,3

5,2

3,3

4,4

4,22,
2

5,1

7,7

7,7

6,3

Figure 1: The network for Example 6.5.

Example 6.5. Consider the network G = (V,E, c, s, t) shown in Figure 1, along with a flow f , in
which each edge e is labeled with two numbers: the edge capacity c(e), and the flow value f(e). Draw
the residual network Gf and use it to determine an augmenting path P from s to t, and label G with
the new flow f ′ = ∆(f, P), by crossing out any no-longer-valid flow labels and replacing them with
new ones.

32

Exercises

1. Does Marcia’s algorithm from Example 2.1 prove that Multiply is polynomial-time Turing
reducible to Add? Explain.

2. Prove that if there is an algorithm that solves problem A in polynomial-time, then A ≤p
T B

for any problem B.

3. Consider the following functions.

//Turing reduces A to B

Boolean solve_A_with_B(int n)

{

//Solve instance n of A by making B-queries

return query_B(n*n) || query_B(n+6);

}

//Turing reduces B to C

Boolean solve_B_with_C(int n)

{

//Solve instance n of B by making C-queries

return !query_C(n+8) && query_C(5*n);

}

Implement a third function solve A with C that is a witness to A ≤T C. Note: your function
must take an instance n of A and return a Boolean decision that uses logic and is allowed to
only make C-queries.

4. Use the previous exercise as inspiration for proving the general result that ≤T reducibility
relation is transitive. In other words, if A ≤T B and B ≤T C, then A ≤T C.

5. Repeat the previous exercise, but replace ≤T with ≤p
T

6. For the Reachability algorithm, use math induction to prove that any vertex x that gets
marked is reachable from u. Hint: assign an index to each marked vertex that represents the
distance of that vertex from u. In particular, assign u index 0. Then if vertex w has assigned
index i and (w, x) is the edge responsible for the marking of x, then assign x index i + 1.
Perform the induction on the index i assigned to vertex x.

7. For the directed graph G = (V,E), where

V = {a, b, c, d, e, f, g, h, i, j, k}

and the edges are given by

E = {(a, b), (a, c), (b, c), (b, d), (b, e), (b, g), (c, g), (c, f),

(d, f), (f, g), (f, h), (g, h), (i, j), (i, k), (j, k)},
use the Reachability Algorithm to determine if vertex k is reachable from vertex a. Show the
contents of the FIFO queue Q at each stage of the algorithm.

33

8. Find a satisfying assignment for the set of clauses

C = {(x1, x2), (x3, x4), (x3, x5), (x2, x5), (x2, x3), (x1, x4), (x1, x5), (x2, x5)}.

9. For 2SAT instance C, suppose you make the query reachable(GC, x3, x3) to a Reachability

oracle who answers the query with “yes”. Assuming C is satisfiable, what can you say about a
satisfying assignment for C? Explain.

10. For some 2SAT instance C, is it possible to know with certainty whether or not C is satisfiable by
making exactly one query to a Reachability oracle and assuming no other knowledge about
C, including its size? Defend your answer.

11. Draw the implication graph for the following set of CNF clauses.

(x2, x3), (x2, x4), (x1, x3), (x2, x3), (x1, x4), (x1, x4), (x1, x2).

Perform the Improved 2SAT Algorithm to determine a satisfying assignment for this set of
clauses. For the line that asks you to “choose a literal l”, choose l = x1.

12. Repeat the previous problem, but now add the additional clause (x2, x3). Verify that there is
now a cycle in the implication graph which contains a variable and its negation. Which variable
is it?

13. Draw the implication graph for the following set of CNF clauses.

C = {(x2, x4), (x2, x5), (x4, x6), (x2, x4), (x5, x6), (x1, x3), (x1, x3), (x3, x5)}.

Perform the Improved 2SAT Algorithm to determine a satisfying assignment for this set of
clauses. For the line that asks you to “choose a literal l”, choose the positive literal of least
index. For example, at the top level of recursion that would be l = x1 since x1 positive and has
smallest index 1. Hint: the recursive case should be executed twice.

14. In the 2SAT algorithm, suppose the oracle answers yes to reachable(GC, x3, x3), but no to
reachable(GC, x3, x3). Then if C is a unique satisfying assignment α, then what can you say
about α?

15. A network consists of the following directed and weighted edges:

(s, a, 10), (s, b, 10), (a, c, 10), (b, d, 9), (b, e, 6), (c, b, 5), (c, t, 7), (d, e, 7), (d, t, 5), (e, t, 8).

Demonstrate the Ford-Fulkerson algorithm on this network with source vertex s, and destination
vertex t. Assume an initial flow of

f1 = (s, a, 5), (a, c, 5), (c, b, 5), (b, d, 5), (d, e, 5), (e, t, 5).

To make it interesting, for each round of the algorithm, choose an augmenting path P from
s to t that has maximum length, i.e., number of edges traversed by P . Draw the sequence of
residual networks and redraw the network/flow with each corresponding updated flow.

16. Repeat the previous exercise for the network shown below. When there is more than one
augmenting path P from s to t, choose the one having maximum length. Assume an initial flow
that is zero on all edges.

34

17. Given a network G = (V,E, c, s, t) and a positive flow f through G, consider a the subgraph H
induced by a set of flow-conserving vertices I ⊆ V − {s, t}. In other words, the vertex set of
H is equal to I, while e = (u, v) is an edge of H iff e ∈ E, and u, v ∈ I. Let E+(H) denote all
edges e = (u, v), such that e ∈ E, u 6∈ I, and v ∈ I, while E−(H) denotes all edges e = (u, v),
such that e ∈ E, u ∈ I, and v 6∈ I. Prove that∑

e∈E+(H)

f(e) =
∑

e∈E−(H)

f(e).

In other words, flow is conserved within a subgraph induced by flow-conserving vertices. Hint:
use mathematical induction on the number of vertices in H.

18. Consider a weighted directed graph G = (V,E, f), where V = {v0, v1, . . . , vn−1}, and f : E →
R+ represents a positive flow through G. Moreover, assume vertex v0 has zero in-degree and
out-degree equal to one via the edge e = (v0, v1) for which f(e) > 0. Hence, v0 is not flow
conserving since there is zero flow entering v0, but f(e) > 0 flow leaving it. Prove that there
must exist at least one other vertex in G that is non-flow-conserving. Hint: use a proof by
contradiction together with the previous exercise.

19. Prove that if network G = (V,E, c, s, t) admits a postive flow f , then there must exist a path
P from s to t in G for which f(e) > 0 for every edge traversed by P . Hint: use the previous
exercise.

20. In the (R→ Q)-part of the proof of Theorem 6.3 a function δ was defined on the edges of the
residual network Gf . Prove that, for each e ∈ E, δ(e) ≤ c(e)−f(e) and δ(er) ≤ f(e). Conclude
that δ obeys the first of the two properties needed to be classified as a flow through Gf .

21. In the (Q → R)-part of the proof of Theorem 6.3 a function δ was defined on the edges of
the residual network Gf . Prove that, for each vertex v ∈ V − {s, t} the sum of all δ-values of
edges entering v equals the sum of all δ-values of edges leaving v. Together with the previous
exercise, conclude that δ is in fact a positive flow through Gf .

35

Exercise Solutions

1. Marcia’s algorithm does not run in polynomial time. To see this, suppose that Marcia wants
the answer to m×m. Then the the size of this problem instance is 2blogmc. However, Marcia’s
algorithm will require the inclusion of m− 1 queries

m+m, 2m+m, . . . , (m− 1)m+m,

and m − 1 is exponential with respect to logm. Thus, the number of algorithm steps grows
exponentially with respect to the problem size.

2. Suppose A can be solved by some algorithm that runs in polynomial time. Let B be any other
problem. Then A ≤p

T B is true in a trivial sense, since the algorithm that solves A makes zero

queries to a B-oracle and so A ≤p
T B by definition of Turing reducible, since the definition

states that there exists a polynomial-time algorithm for solving A that makes “zero or more
queries” to a B-oracle.

3. We have the following function that proves A ≤T C.

//Turing reduces A to C

Boolean solve_A_with_C(int n)

{

//Solve instance n of A by making C-queries

return (!query_C((n*n)+8) && query_C(5*(n*n))) ||

(!query_C((n+6)+8) && query_C(5*(n+6)));

}

4. Suppose A ≤T B. Then there is an algorithm AAB that solves an instance of A by making
queries to a B-oracel. Moreover, since B ≤T C, there is also an algorithm ABC that solves an
instance of B by making queries to a C-oracle.

We now describe an algorithm AAC that solves instances of A by making queries to a C-oracle.
This algorithm is obtained by modifying AAB as follows. For each B-query step query(y), where
y is an instance of B, we replace this B-query step with a function call to ABC(y), which is the
answer returned by ABC on input y. We may think of ABC(y) as a function call that is being
made within the body of AAB. Of course, the ABC function has its own body of source code,
which is now part of the AAC code base. After modifying AAB in this manner, notice that the
only query steps in AAC are found in the inserted ABC code, and are of the form query(z),
where z is a problem instance of C. In other words, all queries are to a C-oracle. Hence, AAC

is an algorithm that Turing reduces A to C.

5. From the solution to the previous exercise, it only remains to show that AAC requires at most
a polynomial number of steps in n, where n the size parameter for problem A. To see this,
first note that the non-query steps of AAC are the same non-query steps as AAB and ABC .
By assumption, AAB requires at most p(n) steps, for some polynomial p(n), and ABC requires
at most q(m) steps for some polynomial q(m), where m is the size parameter for B. Also,
since AAB makes at most p(n) queries (why?) to the B-oracle, it follows that AAC calls the
ABC function at most p(n) times. Moreover, the running time of each function call ABC(y) is
bounded by q(m) and thus the m parameter is bounded by p(n), since p(n) is the maximum

36

number of allowable steps that can be made to construct a query to the B-oracle, and we
may assume that it takes a single algorithm step to construct a single bit of query y. Thus,
the execution of a function call to function ABC will have a running time that is bounded by
q(p(n)), which is a polynomial, since the compostion of two polynomials is also a polynomial.
Finally, since there are at most p(n) function calls to ABC , it follows that the total running time
due to the function calls is bounded by the polynomial p(n)q(p(n)), and so AAC has running
time

O(p(n) + p(n)q(p(n))) = O(p(n)q(p(n))),

which is a polynomial. Therefore, A ≤p
T C.

6. Basis step. Suppose x is marked and has index 0. Then necessarily x = u and so x is reachable
from u.

Inductive step. Assume that for some i ≥ 0, any marked vertex w that has an assigned
index of i is reachable from u. Show that any marked vertex with assigned index i + 1 is also
reachable from u.

Proving the inductive step. Let x be a marked vertex that has been assigned index i + 1.
Let (w, x) be the edge responsible for the marking of x. Then w has assigned index i and by
the inductive assumption is reachable from u. But then x is also reachable from u via a path
from u to w, followed by traversing the edge (w, x).

For the Reachability algorithm, use math induction to prove that any vertex x that gets
marked is reachable from u. Hint: assign an index to each marked vertex that represents the
distance of that vertex from u. In particular, assign u index 0. Then if vertex w has index i
and (w, x) is the edge responsible for the marking of x, then assign x index i+ 1. Perform the
induction on the index assigned to vertex x.

7. Queue sequence: Q1 = {a}, Q2 = {b, c}, Q3 = {c, d, e, g}, Q4 = {d, e, g, f}, Q5 = {e, g, f},
Q6 = {g, f}, Q7 = {f, h}, Q8 = {h}, Q9 = ∅. Therefore, vertex k is not reachable from a since
it was never marked and added to Q.

8. Satisfying assignment: α = (x1 = 0, x2 = 1, x3 = 1, x4 = 0, x5 = 1).

9. The satisfying assignment must assign x3 = 0, since, based on the query answer, there is a path
from x3 to x3 which means the assumption that x3 = 1 leads to a contradiction.

10. No, two queries at a minimum are needed. For example, what is the most one can say if the
query reachable(GC, x3, x3) were answered “yes”? “no”?

11. The implication graph GC is shown below. The reachability set for l = x1 is R = {x1, x2, x3, x4}
and αR satisfies C

37

x1 x2 x3 x4

x1 x2 x3 x4

12. See the following graph with inconsistent cycle highlighted in red.

x1 x2 x3 x4

x1 x2 x3 x4

13. First recursive case: Rx1 = {x1, x3}. Second recursive case:

Rx2 = {x2, x5, x6, x4, x2, x4, x6, x5, x3}

is inconsistent. However, Rx2 = {x2, x4, x6, x5} is consistent. Satisfying assignment: α = (x1 =
1, x2 = 0, x3 = 1, x4 = 0, x5 = 0, x6 = 1).

14. α(x3) = 1, since Rx3 is consistent and Rx3 is inconsistent. Therefore, no satisfying assignment
can assign 0 to x3.

15. Maximum flow: s(f) = 20. See Figures 2 through 15. Note: in the residual networks, green
edges are for the augmenting path, red for backward edges, and black for forward edges.

16. Maximum flow: s(f) = 16..

17. If H has a single vertex v, then, since v is flow-conserving and the edges entering/leaving H
are exactly the edges entering/leaving v, we have∑

e∈E+(H)

f(e) =
∑

e∈E+(v)

f(e) =
∑

e∈E−(v)

f(e) =
∑

e∈E−(H)

f(e).

38

s a c e

b d t

10,5

10,0

10,5

9,5

6,05,5

7,07,5

5,0

8,5

Figure 2: Network G with flow f1

s a c e

b d t

5

5

10

5

5

4

5

65

72

5

5

3 5

Figure 3: Residual Network Gf1 with P1 in green and κ = 2

s a c e

b d t

10,5

10,2

10,5

9,7

6,05,5

7,07,7

5,0

8,7

Figure 4: Network G with flow f2 = ∆(f1, P1)

39

s a c e

b d t

5

5

8

2

5

5

2

7

65

7

7

5

1 7

Figure 5: Residual Network Gf2 with P2 in green and κ = 5

s a c e

b d t

10,5

10,7

10,5

9,7

6,05,0

7,57,7

5,0

8,7

Figure 6: Network G with flow f3 = ∆(f2, P2)

s a c e

b d t

5

5

3

7

5

5

2

7

65

2

5

7

5

1 7

Figure 7: Residual Network Gf3 with P3 in green and κ = 2. Note: this is an error since P3 is NOT
the longest path. I have not corrected it since it requires updating all subsequent figures)

40

s a c e

b d t

10,7

10,7

10,7

9,9

6,05,2

7,57,7

5,2

8,7

Figure 8: Network G with flow f4 = ∆(f3, P3)

s a c e

b d t

3

7

3

7

3

7

9

63

2

2

5

7

3

2

1 7

Figure 9: Residual Network Gf4 with P4 in green and κ = 3 (Note: this is an error since P4 is NOT
the longest path. I have not corrected it since it requires updating all subsequent figures).

s a c e

b d t

10,7

10,10

10,7

9,9

6,35,2

7,57,4

5,5

8,7

Figure 10: Network G with flow f5 = ∆(f4, P4)

41

s a c e

b d t

3

7

10

3

7

9

3

3
3

2

2

5

3

4

5

1 7

Figure 11: Residual Network Gf5 with P5 in green and κ = 1

s a c e

b d t

10,8

10,10

10,8

9,9

6,45,3

7,57,4

5,5

8,8

Figure 12: Network G with flow f6 = ∆(f5, P5)

s a c e

b d t

2

8

10

2

8

9

2

4
2

3

2

5

3

4

5

8

Figure 13: Residual Network Gf6 with P6 in green and κ = 2

42

s a c e

b d t

10,10

10,10

10,10

9,9

6,45,3

7,77,4

5,5

8,8

Figure 14: Network G with flow f7 = ∆(f6, P6)

s a c e

b d t

10

10

10

9

2

4
2

3
7

3

4

5

8

Figure 15: Residual Network Gf7 has no augmenting path from s to t. Algorithm terminates (it’s
about time!)

43

Now suppose it is true for any subgraph H with n − 1 vertices, for some n ≥ 2. Let v be an
intermediate vertex that is external to H. Let a denote the sum of all flow entering v from
vertices outside H, b denote the sum of all flow entering v from vertices within H, c denote
the sum of all flow leaving v and entering vertices outside H, and d denote the sum of all
flow leaving v and entering vertices within H. Thus, by conservation of flow through v, we
have a + b = c + d. Let F denote the total flow entering H. By the inductive assumption, F
also equals the total flow leaving H. Now suppose v is added to H to make a flow-consering
subgraph having n vertices. Then the updated flow entering H is now F + a − d, since the
outside flow enterng v is now entering H, while the flow entering H from v is now internal
flow within H. Similarly, the flow leaving H is now F − b + c, since the flow from H to v is
now internal flow, and the flow from v to vertices outside of H now counts as flow leaving H.
Therefore, H remains flow conserving iff F + a− d = F − b+ c iff a+ b = c+ d, which is true,
and the result is proved.

18. Suppose V −{v0} is a set of flow-conserving vertices, and consider the subgraph H whose vertex
set is V − {v0}. Since the vertices of H are all flow conserving, it follows from the previous
exercise that the flow entering H must equal the flow leaving H. But there is only one vertex
outside of H, namely v0 and it has zero in-degree. Therefore, there is 0 flow leaving H which
contradicts H being flow conserving. Therefore, H must have at least one vertex that do not
conserve flow, and so G has ast least two vertices that do not conserve flow.

19. Consider an algorithm that is almost identical to the reachability algorithm described in Sec-
tion 3. It begins by placing source vertex s into an initially-empty queue Q. Moreover, in the
corresponding while loop, when vertex w is removed and if there is an edge e = (w, x) for
which i) f(e) > 0 and ii) x is unmarked, then x is marked and entered into Q. Let H denote
the set of all vertices that are marked by the algorithm, excluding s. By the previous exercise,
there must be at least one vertex in H that does not conserve flow. But the only possible vertex
having this property is t. Therefore, t gets marked and so there must be a path from s to t
whose traversed edges all have positive flow.

20. Let e ∈ E be a forward edge of the network Gf . Case 1: g(e) = f(e). In this case δ(e) =
δ(er) = 0 and so the capacity limits are not exceeded. Case 2: f(e) > g(e), then δ(e) = 0,
while δ(er) = f(e)− g(e) > 0. Moreover,

δ(er) = f(e)− g(e) ≤ f(e)

which is the capacity of er in Gf . Case 3: f(e) < g(e). Then δ(er) = 0, while δ(e) = g(e)−f(e).
Moreover,

δ(e) = g(e)− f(e) ≤ c(e)− f(e)

which is the capacity of e in Gf .

21. Consider a vertex v ∈ V − {s, t}, and let e ∈ E be an edge entering v. Case 1: g(e) = f(e).
In this case δ(e) = δ(er) = 0. Notice that by placing f(e) amount of flow through er (which
is leaving v) and g(e) amount through e, we get the same net flow of 0. Case 2: f(e) > g(e),
then δ(e) = 0, while δ(er) = f(e) − g(e). Again, notice that by instead placing f(e) amount
of flow through er and g(e) amount through e, we get the same net flow of g(e)− f(e). Case
3: f(e) < g(e). Then δ(er) = 0, while δ(e) = g(e)− f(e). Once more, by instead placing f(e)

44

amount of flow through er and g(e) amount through e, we get the same net flow of g(e)− f(e).
Thus, the total δ-flow through Gf that is entering v can be computed as∑

e∈E+(v)

g(e)−
∑

e∈E+(v)

f(e).

In words, we obtain the total flow through Gf that is entering v by summing the total g-flow
entering v and subtracting the total f -flow entering v. A similar argument shows that the total
δ-flow through Gf that is leaving v is equal to∑

e∈E−(v)

g(e)−
∑

e∈E−(v)

f(e),

which is the total g-flow leaving v minus the total f -flow leaving v. The two expressions for
total in-flow and total out-flow must be equal since f and g are both flows through G, and v is
flow conserving with respect to any flow through G.

45

