CECS 419-519, Writing Assignment 9, Due 8:00 am, April 26th, 2024,
Dr. Ebert

Directions

Make sure name is on all pages. Order pages (front and back) so that solutions are presented in their
original numerical order. Please no staples or folding of corners (your papers won’t get
lost). A paper clip is OK Show all necessary work and substantiate all claims. Avoid plagiarism.

Problems

1. Recall the definition for what it means for a function f : N/ — N to be time constructible

(respectively, space constructible). Prove that i) f(n) = n? is time constructible and ii)
f(n) = n is space constructible. Hint: since a Turing machine’s J-transition function can
be programmed to satisfy the definition for a finite number of small inputs (say, n = 0,1,...,k,

for any constant k£ > 0) focus your analysis on cases where n is “sufficiently large”. (20 pts)

Solution Part i) Suppose the tape contains n > 0 1’s. The idea is to read the input of 1’s
from left to right while maintaining a counter C' whose most-significant bit (MSB) occupies the
cell that is adjacent to the next 1 to be read and which counts the number of 1’s that have
already been read. To begin, the first 1 can be “converted” to a 1-bit counter C' whose current
count equals 1. Then C' has one bit and it is adjacent to cell 2 which stores the next 1 to be
read. Now suppose, for k£ > 2, the k th 1 is to be read and the C’s MSB is located at cell k — 1.
Then the k th 1 is replaced with 0 and the head moves left to C’s least-significant bit and 1 is
added to the count while the head moves right. There are now two cases to consider.

Case 1: As as a result of adding 1 to C, the previously written 0 has been overwritten with
a 1, where 1 is an “overflow” bit. Then this bit now becomes C’s new MSB and C’s length
increases by one. Moreover, C’s MSB is adjacent to cell £ + 1 where the next 1 is to be read.

Case 2: when adding 1 to C', there was no overlfow bit. In this case the bits of C' must be
shifted one place to the right so that C’s MSB is adjacent to cell £+ 1, the location of the next
1 to be read.

Thus, after all 1’s have been read, C' will hold the value n. Finally, since C’s length is always
at most |logn]| + 1, and shifting C’s bits one place to the right requires O(|C|) steps, it follows
that the procedure requires O(nlogn) steps.

Solution Part ii) Since we may assume n satisfies n > logn, we may allow counter C' to
remain in the first [logn| + 1 cells and, for each 1 read by the head, the head moves back to
C and adds 1. This procedure requires n cells and so is linear in n.

2. Review the statement of the Space Hierarchy Theorem, and let ¢(n) be a function that satisfies
t(n) = o(s(n)), meaning that the limit of the quotient ¢(n)/s(n) — 0 as n — oco. Assume both
s(n) and t(n) are space constructible. An instance of decision problem L is a pair (M, w), and
the problem is to decide if M can accept w using at most s(n) tape cells, where n = |w|. Then

1

L can be decided by a DTM M that uses at most O(s(n)) tape cells. Moreover, M works
by simulating M on input w using the tape cells to the right of input (M, w). The goal of
this exercise is to prove that L cannot be decided using O(t(n)) tape cells. Suppose by way of
contradiction that there is a DTM M’ that decides L using O(t(n)) tape cells. Similar to the
proof of the Time Hierarchy Theorem, define a structured semiformal program () that makes
use of the self programmming construct and leads to a contradiction. Clearly explain why it
creates a contradiction and defend your answer. (30 pts)

Solution.

Input w.
Mark tape cell t(|w|). //Possible since t(n) is space constructible.
Simulate M’ on input (self,w).

If the simulation never reached cell t(|w|) and t(|w|) < s(|w]|), then move to cell s(|w])
and return 1 — M’((self,w)).

Else return 0.

If the simulation never reaches cell t(|w|) and t(|w|) < s(Jw|), then the computation continues
and finishes by returning 1 — M’((self,w)). But then this is the result that will be returned
by M when simulating) on input w, and hence

M(Q,w)) # M'((Q,w)),

a contradiction.

. In the proof of Theorem 2.9 of the Space Complexity lecture, a monotone grammar was
constructed that is capable of deriving any word that is accepted by an arbitrary NTM
N = (Q,%,T,6,qo,q,) that writes on at most n cells, where n is the input length. Provide
the third set of rules for this grammar, i.e. the ones that simulate N’s tape head moving right.
(10 pts)

Solution.

The following set of rules supports moving the tape head right. Suppose (p,b,R) € d(q,a),
then for each c,e € Y and d € T,

(q,a,c)(d,e) — (b,c)(p,d,e)
(q,a,c)(d,e) = (b,c)(p,d,e)

. Design a DTM M that accepts all words of the form 0"1", n > 1. Make sure that, whenever M
accepts a word, that it halts in the accepting state at cell 2n (where the final 1 is located). Write
its state diagram and provide an in-class demonstration of your machine using the simulator
provided at

turingmachinesimulator.com

(20 pts)

Solution. Solutions may vary.

5. Repeat Example 2.10 of the Space Complexity lecture, but now using your DTM from the
previous problem when applied to input w = 0011. Provide a complete unabridged derivation
via the monotone grammar defined in the proof of Theorem 2.9. (15 pts)

Solution. Solutions may vary.

6. Recall that in the proof of Theorem 3.1 of the Space Complexity lecture, the functions f(n)
and g(n) were defined in relation to a language A € NSPACE(n) and a monotone grammar GG
for which A = L(G). Namely, f(n) equals the number of length-n words that belong to A,
and g(n) equals the number of (not necessarily terminal) words of length < n that can be
derived by G. Provide a structured and semiformal nondeterministic linear-space program that
computes f(n) assuming g(n) can be computed in nondeterministic linear-space (which it can
via the num derived program on page 24 of the lecture). Make sure that your program returns
UNDEFINED in case the branch on which the computation is being performed may not have

the correct value for f(n). Hint: your program may call the invert program that was defined
in the proof of Theorem 2.9. (15 pts)

Solution.

Name: f
Inputs: i) n > 0, ii) monotone grammmar G = (V, X, R, 5).
Output: the number of members of language A having length n.
m = g(n,G). //Both f and g have G as an implicit input.
If m = UNDEFINED, then return UNDEFINED.
count, = 0.
count 4 = 0.
For each i =0,1,...,n,
For each w € (V UX)* for which Invert(w,G) =1,

count, = count, + 1.

If i =n and w € ¢, then county = county + 1.

If count, # m, then return UNDEFINED. //Some derivable words were missed on this
branch.

Return county.

