CECS 419-519, Writing Assignment 8, Due 8:00 am, April 19th, 2024, Dr. Ebert

Directions

Make sure name is on all pages. Order pages (front and back) so that solutions are presented in their original numerical order. Please no staples or folding of corners (your papers won't get lost). A paper clip is OK Show all necessary work and substantiate all claims. Avoid plagiarism.

Problems

1. Prove that there is some constant c such that, for every strings x and y,

$$
K(x y) \leq 2 K(x)+K(y)+c,
$$

where $x y$ denotes the concatenation of x with y. Hint: self-terminating code. (20 pts)
2. With the help of the Turing-machine model of computation, we may provide formal definitions for the complexity classes P and NP. For example language $L \in \mathrm{P}$ iff there exists a DTM M and a polynomial $p(n)$ for which i) $L(M)=L$ and ii) for an input x of size $n \geq 0$, the computation $M(x)$ requires at most $p(n)$ steps. Similarly, $L \in$ NP iff there exists an NTM N and a polynomial $p(n)$ for which i) $L(N)=L$ and ii) for an input x of size $n \geq 0$, each branch of the computation tree $T(N, x)$ has a length not exceeding $p(n)$. Show that any language L that satisfies the latter definition is a member of NP in accordance with the definition for NP provided in the Computational Complexity lecture.
(a) For a given instance x of L describe a certificate in relation to x. Hint: you may assume that, for the δ transition function of the NTM N that decides $L,|\delta(q, s)| \leq 2$, for all $q \in Q$ and $s \in \Gamma$. (10 pts)
(b) Provide a semi-formal verifier algorithm that takes as input i) an instance x of L, ii) a certificate for x as defined in part a, and decides if the certificate is valid for x. (10 pts)
(c) Provide the running time (as a function of size parameter $n=|x|$) of your verifier algorithm. Defend your answer. (5 pts)
3. For each decision problem L defined below, provide a complexity class C for which the statement $L \in C$ is true. Moreover, C should be chosen so that it is the best possible, meaning that it is the least complex of all possible valid choices. For example, if L is in both P and NP, then P is the better choice. The choices for C are $\mathrm{P}, \mathrm{NP}, \mathrm{co}-\mathrm{NP}, \Sigma_{2}^{p}$, and Π_{2}^{p}. Provide a predicate-logic-formula characterization for each (define all certificate sets and predicate functions). (5 pts each)
(a) An instance of Sum-Free Hamilton Path consists of a simple graph $G=(V, E)$ and a nonnegative integer t. Moreover, each of the n vertices of G is labeled with a positive
integer. The problem is to decide if i) G has a Hamilton path $P=v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}$ for which the set of labels $S=\left\{\operatorname{label}\left(v_{1}\right), \ldots, \operatorname{label}\left(v_{n / 2}\right)\right\}$ has no subset that sums to t.
(b) An instance of Satisfied Max Cut is a simple graph $G=(V, E)$ and a nonnegative integer $k \geq 0$, where each vertex v of G is labeled with a Boolean formula F_{v}. The problem is to decide if, for every cut of size k (See the Max Cut problem from Writing Assignment 6), there is at least one blue vertex and one red vertex each of which is labeled with a satisfiable formula.
(c) An instance of Unsolvable Quadratic Diophantine consists of three positive integers $a, b, c>0$ and the problem is to decide if the equation $a x^{2}+b y=c$ has no positive integer solutions, meaning there is no pair (x, y) of positive integers that satisfies the equation.
(d) Recall the Tseytin transformation $f:$ SAT \rightarrow 3SAT used to map reduce SAT to 3SAT. An instance of decision problem L is a Boolean formula F and a nonnegative integer k. The problem is to decide if $f(F)$ has at least k clauses.
4. For the CFG provided in Example 2.3 of the Space Complexity lecture, provide a derivation of the expression

$$
((a \times a))+(a+a \times a) .
$$

(10 pts)
5. Provide a CFG G for which $L(G)$ equals all words of the form $u \# v$, where $u, v \in\{a, b\}^{*}$ and $u \neq v$. Defend your solution by explaining why u can never equal v, and that all the words that should be in $L(G)$ can in fact be generated. (20 pts)

