
CECS 419-519, Writing Assignment 8, Due 8:00 am, April 19th, 2024,
Dr. Ebert

Directions

Make sure name is on all pages. Order pages (front and back) so that solutions are presented in their
original numerical order. Please no staples or folding of corners (your papers won’t get
lost). A paper clip is OK Show all necessary work and substantiate all claims. Avoid plagiarism.

Problems

1. Prove that there is some constant c such that, for every strings x and y,

K(xy) ≤ 2K(x) +K(y) + c,

where xy denotes the concatenation of x with y. Hint: self-terminating code. (20 pts)

Solution. The idea is that, when representing program P as a binary string s and which
outputs xy, within s must be two substrings: s1 which encodes a minimum-length program P1

that outputs x, and s2 which encodes a minimum-length program P2 that outputs y. Thus,
we must encode these substrings as a pair ⟨s1, s2⟩ in order to be able to parse s and extract
both s1 and s2. The rest of s encodes a program that first simulates P1 to get x, followed by
simulating P2 in order to get y, and then outputs xy. Finally, if we use a self-terminating code
to encode ⟨s1, s2⟩, then this encoding has length 2|s1|+ |s2|, and we have

K(xy) ≤ 2K(x) +K(y) + c,

where c > 0 is the constant number of bits needed to encode the rest of s, and is indenpendent
of x and y (in the sense that the two programs that get simulated could be any two arbitrary
programs).

2. With the help of the Turing-machine model of computation, we may provide formal definitions
for the complexity classes P and NP. For example language L ∈ P iff there exists a DTM M and
a polynomial p(n) for which i) L(M) = L and ii) for an input x of size n ≥ 0, the computation
M(x) requires at most p(n) steps. Similarly, L ∈ NP iff there exists an NTM N and a polynomial
p(n) for which i) L(N) = L and ii) for an input x of size n ≥ 0, each branch of the computation
tree T (N, x) has a length not exceeding p(n). Show that any language L that satisfies the
latter definition is a member of NP in accordance with the definition for NP provided in the
Computational Complexity lecture.

(a) For a given instance x of L describe a certificate in relation to x. Hint: you may assume
that, for the δ transition function of the NTM N that decides L, |δ(q, s)| ≤ 2, for all q ∈ Q
and s ∈ Γ. (10 pts)

1

Solution. Without loss of generality, we may assume that N ’s δ-transition function causes
any computation branch to split into at most two subbranches per computational step.
In other words, the computational tree T (N, x) is binary. A certificate is then a binary
string s of length cp(|x|), for some constant c > 0, and where cp(|x|) is an upper bound
on the longest computational branch of T (N, x). Note: if T (N, x) is not binary, then we
must increase the length of s by only a constant factor, since O(1) bits will be needed to
encode which branch to follow at any nondeterministic step of N .

(b) Provide a semi-formal verifier algorithm that takes as input i) an instance x of L, ii) a
certificate for x as defined in part a, and decides if the certificate is valid for x. (10 pts)

Solution. On inputs x and s, simulate N on input x. During the simulation, for the
i th step of the computation for which the δ-transition function provides two possible next
configurations, the simulator chooses configuration si, i.e. the first (respectively, second)
choice provided by δ in case si = 0 (respectively, si = 1). Thus, certificate s allows for
the simulation to follow a single branch of T (N, x). Moreover, the verifier returns 1 iff the
branch is an accepting branch.

(c) Solution. The running time is O(p(n)), since polynomial p(n) provides an upper bound
on the length of any branch of T (N, x), and simulating a single step of a branch may
be accomplished in O(1) steps (see the proof of the Time Hierarchy Theorem for an
explanation of how this is accomplished).

3. For each decision problem L defined below, provide a complexity class C for which the statement
L ∈ C is true. Moreover, C should be chosen so that it is the best possible, meaning that it
is the least complex of all possible valid choices. For example, if L is in both P and NP, then
P is the better choice. The choices for C are P, NP, co-NP, Σp

2, and Πp
2. Provide a predicate-

logic-formula characterization for each (define all certificate sets and predicate functions). (5
pts each)

(a) An instance of Sum-Free Hamilton Path consists of a simple graph G = (V,E) and a
nonnegative integer t. Moreover, each of the n vertices of G is labeled with a positive
integer. The problem is to decide if i) G has a Hamilton path P = v1, v2, . . . , vn−1, vn for
which the set of labels S = {label(v1), . . . , label(vn/2)} has no subset that sums to t.

Solution. Either Πp
2 or Σ

p
2. Note: The problem should have labeled the edges and not the

vertices. This would make it Σp
2: “Does there exist a set of edges that make a Hamilton

Path such that for every subset of those edges the labels of those edges do not sum to t?”.

(b) An instance of Satisfied Max Cut is a simple graphG = (V,E) and a nonnegative integer
k ≥ 0, where each vertex v of G is labeled with a Boolean formula Fv. The problem is
to decide if, for every cut of size k (See the Max Cut problem from Writing Assignment
6), there is at least one blue vertex and one red vertex each of which is labeled with a
satisfiable formula.

Solution. Πp
2: “For every subset of vertices B (the blue vertices), there exists two vertices

u and v and two assignments α and β such that i) u ∈ B, ii) F (u) is satisfied by α, iii)
v ∈ V −B and iv) F (v) is satisfied by β”.

(c) An instance of Unsolvable Quadratic Diophantine consists of three positive integers
a, b, c > 0 and the problem is to decide if the equation ax2+ by = c has no positive integer
solutions, meaning there is no pair (x, y) of positive integers that satisfies the equation.

Solution. co-NP. “For every pair of positive integers (x, y), |x|, |y| ≤ |c|, ax2 + by ̸= c.”

2

(d) Recall the Tseytin transformation f : SAT → 3SAT used to map reduce SAT to 3SAT. An
instance of decision problem L is a Boolean formula F and a nonnegative integer k. The
problem is to decide if f(F) has at least k clauses.

Solution. P: the Tseytin transformation is polynomial-time computable. One can simply
count the number of clauses upon completion of the transformation.

4. For the CFG provided in Example 2.3 of the Space Complexity lecture, provide a derivation of
the expression

((a× a)) + (a+ a× a).

(10 pts)

5. Provide a CFG G for which L(G) equals all words of the form u#v, where u, v ∈ {a, b}∗ and
u ̸= v. Defend your solution by explaining why u can never equal v, and that all the words
that should be in L(G) can in fact be generated. (20 pts)

Solution. The main goal is to form a word of the form xcA#ydA, where x, y ∈ {a, b}∗ satisfy
|x| = |y|, c, d ∈ {a, b}, and c ̸= d. The A variable can then be used to create suffices of any
length, since characters c and d have already established that the left side does not equal the
right side. The key insight towards achieving this goal is to derive dA before deriving y, and to
derive cA after deriving x. This involves two cases (and hence two sets of rules): c = a, d = b,
and c = b, d = a. The rules are shown as follows.

S → DaA | D′bA

D → aDa | aDb | bDa | bDb | bA#

D′ → aD′a | aD′b | bD′a | bD′b | aA#

A → AA | a | b | ε

For example, to derive babab#baaab we have

S ⇒ DaA ⇒ bDaaA ⇒ baDbaaA ⇒ babA#baaA
∗⇒ babab#baaab.

3

