
CECS 419-519, Writing Assignment 4, Due 8:00 am, February 23rd,
2024, Dr. Ebert

Directions

Make sure name is on all pages. Order pages (front and back) so that solutions are presented in their
original numerical order. Please no staples or folding of corners (your papers won’t get
lost). A paper clip is OK Show all necessary work and substantiate all claims. Avoid plagiarism.

Problems

1. Prove that there is a constant c such that, for all x, y ∈ Σ∗, 0 ≤ K(x|y) ≤ K(x) + c.

Solution. Let P be a program that is capable of outputting x without the help of any input
and consider the following program Q and for which |P | = K(x).

Input y.

Return the result of simulating program P .

Then the size of Q equals the number of bits needed to encode P plus a constant c number of
bits to encode the Q’s instructions. Therefore,

0 ≤ K(x|y) ≤ |P |+ c = K(x) + c.

2. Prove that ∑
|x|=n

2−2K(x|n)

is bounded by some positive constant C that is independent of n. Hint: use the ideas from
Proposition 3.1.

Solution. As part of the proof of Proposition 3.1 it was observed that, for i = 0, 1, . . . , n− 1,
there are at most 2i words x of length n for which K(x|n) = i. This observation led to a
lower bound for E[K(x|n)] and, in this instance, has the effect of providing an upper bound for
2−2K(x|n) (why?). Thus,

∑
|x|=n

2−2K(x|n) ≤
n−1∑
i=0

2i · 2−2i + 2−2n =
n−1∑
i=0

1

2i
+ 2−2n = 2(1− 1

2n
) + 2−2n < 2

and so is bounded above by C = 2 which does not depend on n.

3. A binary word x is said to be Kolmogorov random iff K(x|n) ≥ n, where n = |x|. Prove
that, if n is sufficiently large and x has n/4 1’s and 3n/4 0’s, then x cannot be Kolmogorov
random. Hint: consider Huffman coding!
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Solution. Suppose x is Kolmogorov random and has n/4 1’s and 3n/4 0’s, where n is even.
Then K(x|n) ≥ n. Consider the Huffman binary extension code from Example 4.4 of the
Information Theory lecture. We may use this code to encode each consecutive pair of bits of
x. Moreover, as n increases, the average length per pair equals 1.6875 (this actually requires
proof, since there might be a way to arrange the bits so that, for infinitely many n, the average
length stays some constant value above 1.675. But for the sake of this exercise, we’ll assume
this cannot happen). Now consider a program P which stores the n/2 codewords c1, c2, . . . , cn
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that encode x.

Input n.

w = λ.

For i ∈ {1, 2, . . . , n/2},

w = w · decode(ci).

Return w.

Then P outputs x and |P | = (n/2)(1.675) + c = 0.844n + c for some constant c > 0. Thus,
K(x|n) < n, a contradiction.

4. Provide the recursive self-terminating encoding for the number 337.

Solution. (337)2 = 101010001. |101010001| = 9 and (9)2 = 1001. |1001| = 4 and (4)2 = 100.
|100| = 3 and (3)2 = 11. Thus, we must concatenate four words and prefix those words with a
self-terminating code for 4: 100001. This gives the final encoding

100001 · 11 · 100 · 1001 · 101010001.

5. Use the self programming concept to prove that K(x) is not a URM computable function.
Hint: review Theorem 3 and the definition of recursively enumerable on pages 17-19.

Solution. Assume K(x) is total computable and consider the following program P ’s.

For i ∈ N ,

If K(i) > |self|, then return i.

Since there are strings with arbitrarily high K-complexity, we know that P returns a value, say
x, since |P | = |self| is a constant. Thus, K(x) > |P |, but, since P outputs x, it must be true
that K(x) ≤ |P |, a contradiction. Therefore, K(x) is not total computable.
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