
The Time Hierarchy Theorem

Last Updated March 27th, 2024

1 Statement and Proof

In this lecture we use the self programming construct along with the Turing machine model of
computation to prove the Time Hierarchy Theorem (see Chapter 9 of Sipser’s Theory of Computation).

Definition 1.1. Let function t : N → N satisfy t(n) ≥ n log n for all n ≥ 0. Then t is said to
be time constructible iff there is a transducer TM that, on input 1n is able to output the binary
representation of t(n) in at most O(t(n)) steps.

Note that the (log, polynomial, and exponential) functions that we tend to care most about are all
time constructible (exercise!).

Theorem 1.2. (Time Hierarchy Theorem) If t(n) is time constructible, then there is a decision
problem that can decided in O(t(n)) steps, but cannot be decided in o(t(n)/ log t(n)) steps.

Proof. Consider the decision problem L for which a positive instance is a pair ⟨M,w⟩, where M is
the encoding of a deterministic Turing machine, w ∈ Σ∗ is an input word for M , and M accepts w
within t(n)/ log t(n) steps. Then L can be decided in O(t(n)) steps via a TM M̂ which, on input
⟨M,w⟩ simulates the computation of M(w) for t(n)/ log t(n) steps. It does this by interleaving the
work tape with

1. cells c0, c1, c2, . . . that represent the actual computation M(w) along with

2. O(log t(n))-lengthed blocks of cells B0, B1, B2, . . . each of which stores a copy of M along with
a binary number of length ⌊log t(n)⌋ that serves as a “timer” for keeping track of the remaining
number of steps to perform in the simulation.

This interleaving process is necessary, since M̂ can only afford a simulation overhead of O(log t(n))
steps per simulation step and thus must always be within a constant number of steps from M and

1

Administrator
Pencil

the binary “timer”. Therefore M̂ can decide instance ⟨M,w⟩ in

O(log(t(n)) · t(n)/ log(t(n))) = O(t(n))

steps as desired. For the sake of concreteness, let c1 > 0 be a constant so that M̂ runs in at most
c1 · t(n) number of steps, where n = | ⟨M,w⟩ |.

Now suppose L is also decidable by TM M ′ in s(n) = o(t(n)/ log t(n)) steps, meaning that

L = L(M̂) = L(M ′).

Consider the following informal program for some TM Q.

Input w.

Simulate M ′ on input ⟨self, w⟩.

Return 1−M ′(⟨self, w⟩).

To finish the proof, we make the following points.

1. Unlike M̂ ’s simulation of M(w) which requires M̂ to keep track of the number of simulation
steps, Q does not care about the length of the simulation of M ′(⟨self, w⟩), and follows it all
the way to it completion. Because of this Q completes its simulation in no more than c2 · s(n)
steps, where c2 > 0 is some constant and n = | ⟨self, w⟩ |.

2. Since s(n) = o(t(n)/ log t(n)), by definition this means that

lim
n→∞

c2 · s(n)
c1 · t(n)

= 0.

Thus, for n sufficiently large, c2 · s(n) < c1 · t(n).

3. Now let w be a word for which n = |w| is so large that c2 ·s(n) < c1 · t(n). Then Q will complete
its simulation of M ′(⟨self, w⟩) in fewer than c1 · t(n) steps, which means

M̂(⟨Q,w⟩) = Q(w) = 1−M ′(⟨Q,w⟩),

where the second equality comes from the fact that the computation Q(w) involves simulating
M ′(⟨Q,w⟩) and returning the opposite result of that simulation. Thus, M̂ and M ′ return
different values on input ⟨Q,w⟩, which contradicts the assumption that both machines accept
the same language. Therefore, M ′ does not exist which proves the theorem.

2

Administrator
Pencil

2 The Complexity Class EXPTIME

Complexity class EXPTIME is defined as the set of all decision problems L that can be decided in
O(2p(|x|)) steps for each instance x of L, where p is some polynomial.

Corollary 2.1. Class P is a proper subset of EXPTIME.

Proof. Since log 2n = n and nk = o(2n/n) for all k ≥ 0, it follows by the Time Hierarchy theorem
that there is a decision problem L that requires O(2n/n) steps, yet cannot be decided in a polynomial
number of steps. Therefore, L ∈ EXPTIME− P.

3 The Space Hierarchy Theorem

We now provide an analogous space hierarchy theorem whose proof is left as an exercise.

Definition 3.1. Let function s : N → N satisfy s(n) = Ω(log n). Then s is said to be space
constructible iff there is a transducer TM that, on input 1n is able to output the binary representation
of s(n) using at most O(s(n)) space.

Note that the (log, polynomial, and exponential) functions that we tend to care most about are all
space constructible (exercise!).

Theorem 3.2. (Space Hierarchy Theorem) If s(n) is space constructible, then there is a decision
problem that can be decided in O(s(n)) space, but cannot be decided in o(s(n)) space.

3

Administrator
Pencil

Administrator
Pencil

