
The PSPACE Complexity Class

Last Updated April 19th, 2024

1 Polynomial Space

Definition 1.1. PSPACE represents those decision problems that are decidable using a polynomial
amount of space. In other words,

PSPACE =
⋃
k≥1

SPACE(nk).

Proposition 1.2. The following inclusions hold.

P ⊆ NP ⊆ PH ⊆ PSPACE = NPSPACE ⊆ EXPTIME.

Proof. The first inclusion is Theorem 4.9 of the Complexity lecture. The second inclusion follows
from the definition of PH. The equality PSPACE = NPSPACE follows from Savitch’s theorem, and the
final inclusion follows from Lemma 1.5 of the Space Complexity lecture. All that remains to show
is that PH ⊆ PSPACE. To this end, let L ∈ Σp

k be given, and let Q1x1 · · ·Qkxk p(x1, . . . , xk, y) be the
predicate function associated with L. Consider the following recursive algorithm for evaluating L’s
predicate function.

1

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Name: eval

Inputs:

1. instance y of decision problem L,

2. (possibly empty) list L = [c1, c2, . . . , cl], l ≥ 1, cj ∈ Cj = dom(xj), 1 ≤ j ≤ l.

Output: Ql+1xl+1 · · ·Qkxk p(c1, . . . , cl, xl+1, . . . , xk, y).

If l = length(L) = k, then return p(c1, . . . , ck, y).

If l + 1 is odd, then //Ql+1 = ∃

For each d ∈ Cl+1,

If eval(y, L+ d) = 1, then return 1.

Return 0.

Else //Ql+1 = ∀

For each d ∈ Cl+1,

If eval(y, L+ [d]) = 0, then return 0.

Return 1.

Since predicate function p is decidable in polynomial-time, it is also decidable using a polynomial
amount of space. Therefore, the base is computable in a polynomial amount of space. As for the
recursive cases, notice that the required memory consists of i) at most k counters, each having O(q(|y|)
bits and ii) list L whose size is also O(q(|y|) which is a bound for each of the at most k certificates
that are stored in L at any given time. Therefore, the algorithm requires a polynomial amount of
space.

2

Administrator
Pencil

Administrator
Pencil

2 Quantified Boolean Formula

Definition 2.1. A quantified Boolean formula is a Boolean formula of the form

Q1xi1 · · ·Qkxik ϕ(x1, . . . , xn),

where each Qj is a quantifier, each xij a Boolean variable, 1 ≤ j ≤ k, and ϕ(x1, . . . , xn) is a Boolean
formula.

Notes:

1. The above definition actually defines a special case of QBF’s known as those in prenex normal
form, meaning that the quantifiers are written first, followed by an unquantified Boolean
formula ϕ. However, every QBF F is logically equivalent to one, call it F ′, that is in prenex
normal form and the construction of F ′ can be done efficiently relative to the size of F .

2. When each variable xi of ϕ is bounded by a quantifier Qi, then we have what is called a totally
quantified Boolean formula (TQBF), and in this case it follows that every TQBF has a
single evaluation of either 0 or 1. For example, the Boolean formula x ∨ y has four different
evaluations depending on each of the four possible ways of assigning the variables x and y.
However, the statment ∃x∀y(x ∨ y) has the single evaluation of 1, since it is a true statement
that “there exists an x (namely x = 1) such that, for every possible way of assigning a value to
y (0 or 1), x ∨ y evaluates to 1”. In what follows, we assume each QBF of interest is a TQBF.

3

Administrator
Pencil

Example 2.2. Consider a graph G = (A ∪ B ∪ C,E) that has three sets of vertices: A = {a, b, c},
B = {1, 2, 3, 4}, and C = {α, β}. For each of the following predicate logic formulas, draw the smallest
possible (in terms of number of edges) version of G for which the formula evaluates to true. Each
statement assumes that i) dom(x) = A, ii) dom(y) = B, and dom(z) = C.

1. ∃x∀y∃z ((x, y) ∈ E ∧ (y, z) ∈ E)

2. ∀x∃y∀z ((x, y) ∈ E ∧ (y, z) ∈ E)

Solution.

4

Administrator
Pencil

Example 2.3. Evaluate the QBF ∀x∃y((x ∨ y) ∧ (x ∨ y)).

Solution.

Example 2.4. Evaluate the QBF ∃x∀y∀z((x ∨ y) ∧ (z ∧ x)).

Solution.

5

Administrator
Pencil

Administrator
Pencil

3 PSPACE Completeness

Definition 3.1. A decision problem B is said to be PSPACE-complete iff

1. B ∈ PSPACE

2. for every other decision problem A ∈ PSPACE, A ≤p
m B.

Definition 3.2. An instance of Totally Quantified Boolean Formula (TQBF) is totally quantified
Boolean formula F , and the problem is to decide if F evaluates to 1.

It may not seem too surprising that TQBF is our first PSPACE-complete problem since it generalizes
both SAT and the Polynomial Hierarchy for the following reasons.

1. Every instance F (x1, . . . , xn) of SAT is a special case of TQBF in that the satisfiability of F is
equivalent to

∃x1 · · · ∃xn F (x1, . . . , xn)

evaluating to 1.

2. For every k ≥ 0, an instance y of a decision problem L ∈ Σp
k (respectively, L ∈ Πp

k) may be
expressed as an instance of TQBF via a binary encoding of y, each of the certificate variables
x1, . . . , xk, along with a conversion of the predicate function p to a Boolean formula whose
variables are the Boolean encoding variables of y, x1, . . . , xk.

3. The recursive algorithm similar to the one presented in the proof of Proposition 1.2 may be
used to evaluate a TQBF using a polynomial amount of space.

6

Administrator
Pencil

Administrator
Pencil

Theorem 3.3. TQBF is PSPACE-complete.

Proof. Let L ∈ PSAPCE be given via DTM M that decides L using an amount of space that is
bounded by nk, for some constant k ≥ 1, where n = |x| is the size of input instance x of L. We
must construct a TQBF F that evaluates to 1 iff M(x) = 1 and whose size (i.e. number of variables,
quantifiers, and logic operations used) is also bounded by a polynomial with respect to n. The
strategy we use is to represent as a TQBF the statement

ϕ(c1, c2, t)

which evaluate to 1 iff configuration c2 is reachable from c1 in t or fewer steps, where c1 and c2
are possible configurations that may appear in the computation of M on input x. Thus, these
configurations have a length at most O(nk) and t has a size that is no greater than 2dn

k
, for some

constant integer d > 0. Thus, thinking of ϕ as a function, we would intially set c1 = cinit, c2 = cfinal,

and t = 2dn
k
, where cinit is an initial configuration with x placed on the tape as input, and cfinal

is a unique accepting state (say, in the accept state with the head at cell 1, all cells holding some
common symbol in Γ).

Now, given arbitrary c1, c2, and t, We now provide a recursive formula for expressing ϕ(c1, c2, t) as a
TQBF of polynomial size with respect to n = |x|.

Base Case t = 1. In this case ϕ(c1, c2, t) may either written as the Boolean formula c1 = c2 or as
the Boolean formula that evaluates to 1 iff c2 is reachable from c1 in a single step.

For the case of c1 = c2, since each configuration can be expressed using O(nk) Boolean variables,
and we must check for pairwise equality between the variables used to encode c1 and the
variables used for c2, it follows that c1 = c2 may be expressed with a (quantifier free) Boolean
formula having size O(nk).

As for the latter case, see the proof of Cook’s theorem for a list of each of the (quantifier free)
Boolean formulas that must be supplied in order to check if c2 is the next configuration after
c1. Together, these formulas have a size equal to O(n2k).

Recursive Case t = 2j, j ≥ 1. Then for ϕ(c1, c2, t) to evaluate to 1, there must exist a middle
configuration m such that for all configurations c3 and c4, if c3 = c1 and c4 = m, of if c3 = m
and c4 = c2, then ϕ(c3, c4,

t
2
) must evaluate to 1. As a predicate-logic formula this may be

written as

∃m∀c3∀c4 (((c3 = c1) ∧ (c4 = m)) ∨ ((c3 = m) ∧ (c4 = c2)) → ϕ(c3, c4,
t

2
)).

Notice that, because of the clever use of alternating quantifiers, the recursion tree has a single branch
with depth log(2dn

k
) = dnk. Moreover, at each (non-leaf) level of the tree, we add O(nk) amount of

quantifiers, Boolean variables, and logic operations. This is because the configurations m, c3, and c4
are encoded using O(nk) Boolean variables, and the four equality statements, as noted in the base
case description, require at most O(nk) operations. Finally, at the bottom level of recursion when
t = 0, O(n2k) additional operations are required. Thus, the final formula size equals

O(nknk) + O(n2k) = O(n2k)

which is a polynomial in the size of input x.

7

Administrator
Pencil

4 More PSPACE-Complete Problems

One way of interpreting the TQBF problem is thinking of it as a game between two players: ∃ and ∀.
Without loss of generality, we may assume that the quantifier sequence for a TQBF instance

F = ∃x1∀x2 · · ·Qmxmϕ(x1, . . . , xm)

begins with ∃ and alternates between ∃ and ∀. The goal for player ∃ is to assign values to the
∃-variables that will ensure that formula ϕ evaluates to 1. On the other hand, for each assignment
made by ∃, player ∀ tries to counter by assigning a value to the next variable that will ensure that
ϕ evaluates to 0. Thus, player ∃ has a winning strategy iff there is some way of assigning the ∃
variables so that, regardless of how ∀ counters with its assignments to its own variables, the formula
evaluates to 1.

Definition 4.1. An instance of Formula Game is a TQBF formula F whose quantifier sequence
begins with ∃ and alternates between ∃ and ∀. Moreover, F is a positive instance iff it evaluates to 1,
meaning that player ∃ can assign its variables in such a way that, regardless of how player ∀ assigns
its variables, F will evaluate to 1.

Theorem 4.2. Formula Game is PSPACE-complete.

Proof. Since Formula Game is essentially the same decision problem as TQBF, the proof of its PSPACE-
completeness is essentially the same as the proof that TQBF is PSPACE-complete.

8

Administrator
Pencil

Example 4.3. Consider the formula

∃x1∀x2∃x3[(x1 ∨ x2) ∧ (x2 ∨ x3)) ∧ (x2 ∨ x3)].

Viewed as an instance of Formula Game, who wins the game?

9

Administrator
Pencil

4.1 Generalized Geography

The geography game is a 2-player game where players take turns saying the name of a city. The
game begins by starting with a city c0. Then Player 1 must say the name of a city c1 whose first
letter equals the last letter of c0 and for which c1 ̸= c0. Player 2 must then respond by saying the
name of a city c2 whose first letter begins with the last letter of c1, and for which c2 ̸∈ {c1, c0}. Play
continues in this manner with players taking turns saying city names until a player is unable to say
the name of a city ck whose first letter equals the last letter of the previously named city ck−1 and
for which ck ̸∈ {c0, c1, . . . , ck−1}. This player loses the game.

One way to visualize the game is by using a directed graph G = (V,E) where each vertex u ∈ V is
labeled with the name of a city, denoted c(u) and there is an edge from u to v iff the last letter of
c(u) equals the first letter of c(v).

10

Administrator
Pencil

We may generalize the geography game by defining an instance of the Generalized Geography

(GG) decision problem to be a pair (G, v0), where G = (V,E) is a directed graph and v0 ∈ V is the
designated start vertex. Similar to the geography game, Generalized Geography is a two-player
game where players take turns selecting a vertex from G. The game begins at vertex v0. Then Player
1 must select a vertex v1 for which (v0, v1) ∈ E. Player 2 must then respond by selecting a vertex
v2 for which (v1, v2) ∈ E and v2 ̸∈ {v0, v1}. Play continues in this manner with players selecting
vertices until a vertex vk−1 is selected so that the next player is unable to find a vertex vk for which
(vk−1, vk) ∈ E and vk ̸∈ {v0, v1, . . . , vk−1}. This player loses the game. Finally, (G, v0) is a positive
instance of GG iff Player 1 has a winning strategy.

Example 4.4. Below is an example of an instance of Generalized Geography. Is this a positve
instance of GG?

11

Administrator
Pencil

Administrator
Pencil

Theorem 4.5. Generalized Geography is PSPACE-complete.

Proof. GG is in PSPACE via an algorithm similar to the one used to show that PH is in PSPACE (see
Proposition 1.2).

We now describe a reduction from Formula Game to GG. Given an instance F = ∃x1∀x2 · · · ∃xkϕ(x1, . . . , xk)
of Formula Game, we assume without loss of generality that

1. Q1 = Q3 = · · · = Qk = ∃, where k is odd and

2. ϕ is written in conjunctive normal form for which each disjunction has three literals (i.e. ϕ is
an instance of 3SAT).

Then mapping reduction f(F) = (G, b) maps F to an instance of GG, an abstract example of which
is shown below.

12

The idea is that the left half of G has a stacked sequence of k diamond subgraphs, one for each
variable xi. When i is odd (respectively, even), Player 1 (respectively Player 2) must select either
the left-corner or the right-corner vertex of diamond xi. Selecting the left (respectively, right) corner
is analgous to assigning variable xi the value 1 (respectively, 0). Also, since k is odd, Player 1 will
select vertex c, while Player 2 then has the option of selecting one of the nodes c1, c2, . . . , cm, where
ci corresponds with clause i of ϕ.

Now suppose that Player 1 has a winning strategy for Formula Game instance F . Then Player 1
applies this strategy to (G, b) by choosing the appropriate corner of each diamond that it controls/assigns.
Then, after Player 1 has selected vertex c, then regardless of which ci is selected by Player 2, there
will exist at least one literal node, say lj of ci that evaluates to 1, meaning that the player who
controls/assigns variable xj selected a corner that corresponds with lj being assigned 1. Without loss
of generality, assume lj = xj and Player 1 controls/assigns xj. Then Player 1 selected the left-corner

13

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

node n of diamond j since xj was assigned 1. Moreover, n is the only node that is reachable from
literal node xj in clause ci. Hence, Player 2 loses since n was already selected by Player 1. Therefore,
if F is a positive instance of Formula Game, then f(F) is also a positive instance of GG, since Player
1 has a winning strategy.

Now suppose Player 1 does not have a winning strategy for instance F of Formula Game. In this
case, regardless of the assignments made by Player 1, Player 2 may assign its variables values in such
a way that at least one clause ci will not be satisfied by the assignment α formed by both players.
Player 2 then selects ci after Player 1 selects c. Now it’s Player 1’s turn. Without loss of generality,
suppose Player 1 selects xj ∈ ci. Then, since xj is assigned 0 by α, the left-corner node of diamond
xj has yet to be selected. Thus, Player 2 may select that node. But then that node points only to
the bottom node of the diamond, which has already been played, and so Player 1 loses. Therefore, if
F is a negative instance of Formula Game, then f(F) is also a negative instance of GG, since Player
2 has a winning strategy. Therefore f is a valid polynomial-time mapping reduction from Formula

Game to GG.

14

Example 4.6. Consider the formula

∃x1∀x2∃x3[(x1 ∨ x2) ∧ (x2 ∨ x3)) ∧ (x2 ∨ x3)].

Viewed as an instance of Formula Game. Apply the reduction described in the proof of Theorem 4.5.

15

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

