The LOG SPACE Complexity Class

Last Updated April 24th, 2024

1 Log Space

In this lecture we study decision problems that may be decided using $O(\log n)$ space, where n is the input size. However, to do this we must modify the Turing machine definition so that a machine now has two tapes: a read-only tape for holding the input, and a read-write *scratchwork tape* for the purpose of computing on behalf of deciding the input. A computation configuration is similar to that of the original TM model, but now the configuration must include a nonnegative integer that indicates the current location of the read-only tape head.

Definition 1.1. Decision problem A is a member of L iff it is decidable by a DTM that uses $O(\log n)$ scratchwork-tape cells when deciding an instance x of A for which n = |x|. Similarly, A is a member of NL iff it is decidable by an NTM that uses $O(\log n)$ scratchwork-tape cells when deciding an instance x of A for which n = |x|.

Example 1.2. Consider the language A consisting of all words of the form $0^n 1^n$ for some $k \ge 0$. Then $A \in L$ since a DTM M can count the number of 0's that begin a word, and then count the number of 1's that follow. If the two counts are equal and the 1's are not followed by a 0, then M accepts. The two counters each require $O(\log n)$ amount of memory and therefore $A \in L$. **Example 1.3.** An instance of decision problem Path is a triple (G, s, t), where G = (V, E) is a directed graph, $s, t \in V$, and the problem is to decide if there is a path in G that starts at s and ends at t. We may assume that G is represented in the following format: $|\vee| = \square$

$$u_1: (v_{11}, \ldots, v_{k_1 1}), \ldots, u_n: (v_{1n}, \ldots, v_{k_n n}),$$

were, e.g., the vertices v_{11}, \ldots, v_{k_11} are the **neighbors** of u_1 which is denoted as $N(u_1)$. $\downarrow \equiv \bigcap$

The following nondeterministic log-space algorithm proves that $Path \in NL$. Note: S and t require O (bgn bits to

Name: can_reach Inputs: i) directed graph G = (V, E), ii) $s \in V$, iii) $t \in V$ Output: 1 iff there is a path in G from s to t. \longrightarrow If s = t, then return 1.

u = guess(N(s)).

Return $can_reach(G, u, t)$.

The algorithm will certainly return 1 on at least one branch iff t is reachable from s.

In terms of memory used, the algorithm only needs to store a copy of t and the current value of u. Letting n = |V|, we see that both vertices may be encoded using $O(\log n)$ bits using a uniform-length binary encoding scheme. Therefore, $Path \in NL$.

 $S \rightarrow \mathcal{U}_{11} \rightarrow \mathcal{U}_{22} \rightarrow t$

2 Log Space Reducibility

We would like to have a meaningful notion of reducibility when it comes to problems in either L or NL. Although polynomial-time reducibility seems very appropriate for the generally complex class of problems in both NP and PSPACE, since it turns out that *every* problem in NL is polynomial solvable, polynomial-time reducibility seems too strong for log-space problems (just as polynomial-*space* reducibility is too strong for PSPACE). Instead, we introduce the notion of log space reducibility.

Definition 2.1. A transducer T is a type of Turing machine that consists of a read-only input tape, a read-write scratchwork tape, and a write-only output tape. T is called a log space transducer iff it's scratchwork tape uses $O(\log n)$ cells, where n is the size of the input to T.

= max # of configurations \mathcal{C} logr

Definition 2.2. Function $f : A \to B$ is said to be log space computable iff there is a log space transducer T for which f(x) = T(x) for all $x \in A$.

polynomial lime

Definition 2.3. Decision problem A is **log space mapping reducible** to decision problem B, written $A \leq_L B$, iff there exists a log-space-computable function $f : A \to B$ for which x is a positive instance of A iff f(x) is a positive instance of B.

Theorem 2.4. If $A \leq_L B$ and $B \in L$, then $A \in L$.

Proof Idea. Assume $A \leq_L B$ via log space computable function $f : A \to B$, where f is computed by T. Let M_B be the log space computing TM that decides B. We now describe a log space computing TM Q that decides A.

- 1. On input x, Q's ultimate goal is to simulate M_B on input f(x) and accept x iff M_B accepts f(x).
- 2. Problem: f(x) could be very large, as in polynomial with respect to |x|. Assume $|f(x)| \le cn^k$ for constants c, k > 0. This assumption is validated Lemma 1.5 of the Space Complexity lecture.
- 3. Solution: repeat the following until the computation of M_B on input f(x) has been completed.
 - (a) For each step of the simulation of M_B on input f(x), keep track of the location *i* of M_B 's read-only tape head.
 - (b) Before applying M_B 's δ -transition function (which requires knowing the current input symbol at location *i*), simulate *T* up to when *T* writes the *i* th symbol w_i on to the output tape.
 - (c) Use w_i for the purpose of applying M_B 's δ -transition function to obtain the next configuration.

Bis Real Tape:

4. Accept x iff B accepts f(x).

Program Q uses $O(\log n)$ space.

1. Storing programs M_B and T requires O(1) space.

- 2. Storing the current configuration of M_B requires $O(\log(cn^k)) = O(\log n)$ space since the size of V_{O} any configuration in the computation $M_B(f(x))$ is logarithmic with respect to the size of f(x) which is bounded by cn^k .
- 3. Storing a configuration of T requires at most $O(\log n)$ space since T itself uses at most $O(\log n)$ space.
- 4. Similar to 2, the variable that holds the current location of M_B 's input head requires $O(\log(cn^k)) = O(\log n)$ space.

3 NL-Completeness

Definition 3.1. Decision problem *B* is said to be NL-complete iff

- 1. $B \in \mathsf{NL}$
- 2. for every other decision problem $A \in \mathbb{NL}$, $A \leq_L B$.

A corollary to Theorem 2.4 (exercise) is that if any NL-complete language is in L, then L = NL.

Theorem 3.2. Path is NL-complete.

Proof Idea. Let $A \in \mathbb{NL}$ be given and suppose NTM N decides A using log space scratchwork.

- 1. Assume that N has a unique accepting configuration c_a , regardless of input.
- 2. There is a constant d > 0 such that, for an input x of size n, the computation M(x) uses configurations that may be written using at most $d \log n$ tape cells.
- 3. Given instance x of A, with |x| = n, define the configuration graph $G_x = (V, E)$, where
 - (a) $c \in V$ iff c is a valid configuration for M (note: it's possible that c may never get used in the computation M(x)), and
 - (b) $(c_1, c_2) \in E$ iff c_2 is a possible next configuration given that c_1 is the current configuration of some computation of M, assuming x as input.
- 4. There is a log space transducer T for which, given input $x \in A$, T(x) outputs G_x in a format similar to the one described in Example 1.3. True, since
 - (a) T may go through all possible legal configurations of N that have size at most $d \log n$.
 - (b) For each legal configuration c encountered, T then uses N's δ -transition function to list all the configurations c' that are reachable from vertex c in one step, i.e. $(c, c') \in E$.
- 5. After writing G_x , T then writes c_x and c_a , where c_x is the initial configuration of the computation N(x).
- 6. Therefore, x is a positive instance of A iff (G_x, c_x, c_a) is a positive instance of Path, since N accepts x iff there is a path of configurations from c_x to c_a .

Corollary 3.3. $NL \subseteq P$.

Proof. Let $A \in NL$ be given and consider the reduction from A to PATH provided in the previous theorem. This is not only a log space reduction, but it is also a polynomial time reduction (exercise!). But, since PATH $\in P$, it follows that $A \in P$. In other words, any decision problem that is polynomial-time reducible to a problem in P, must also be in P (exercise!).

Corollary 3.4. TQBF \notin NL.

Proof. By the Space Hierarchy Theorem, and the fact that every NL problem can be decided using a polynomial amount of space, it follows that NL is properly contained in PSPACE. But TQBF is PSPACE-complete and it can be shown that the mapping reduction used to prove this is in fact a log space reduction. Therefore, if TQBF were in NL, then all of PSPACE would be contained in NL, which contradicts the Space Hierarchy Theorem.