The LOG SPACE Complexity Class

Last Updated April 24th, 2024

1 Log Space

In this lecture we study decision problems that may be decided using O(logn) space, where n is the
input size. However, to do this we must modify the Turing machine definition so that a machine
now has two tapes: a read-only tape for holding the input, and a read-write scratchwork tape for
the purpose of computing on behalf of deciding the input. A computation configuration is similar to
that of the original TM model, but now the configuration must include a nonnegative integer that
indicates the current location of the read-only tape head.

Definition 1.1. Decision problem A is a member of L iff it is decidable by a DTM that uses O(logn)
scratchwork-tape cells when deciding an instance = of A for which n = |z|. Similarly, A is a member of
NL iff it is decidable by an NTM that uses O(logn) scratchwork-tape cells when deciding an instance
x of A for which n = |z|.

Example 1.2. Consider the language A consisting of all words of the form 0"1™ for some k£ > 0.
Then A € L since a DTM M can count the number of 0’s that begin a word, and then count the
number of 1’s that follow. If the two counts are equal and the 1’s are not followed by a 0, then M
accepts. The two counters each require O(logn) amount of memory and therefore A € L.

Example 1.3. An instance of decision problem Path is a triple (G, s,t), where G = (V. F) is a
directed graph, s,t € V, and the problem is to decide if there is a path in G that starts at s and
ends at . We may assume that G is represented in the following format: \\2 \ L ﬁ

[‘ulz(zﬂ,...,@),...,um \E \:m

were, e.g., the vertices vy, ..., vx,1 are the neighbors of u; which is denoted as N (uy).

The following nondeterministic log-space algorithm proves that Path € NL.

Name: can_reach e Q]f\e
Inputs: i) directed graph G = (V, E), ii) s € V,iii) t € V

o)
Output: 1 iff there is a path in G from s to t. O < \bj
~> If s =t, then return 1. \o \/\S ;\'D
u = guess(N(s)). '6‘(\(/0()&
Return can_reach(G,u,t). S S U /Z/{
— o I\ ’% 22—‘%’&/

The algorithm will certainly return 1 on at least one branch iff ¢ is reachable from s.

In terms of memory used, the algorithm only needs to store a copy of ¢ and the current value of w.
Letting n = |V, we see that both vertices may be encoded using O(logn) bits using a uniform-length
binary encoding scheme. Therefore, Path € NL. O]

Administrator
Pencil

2 Log Space Reducibility

We would like to have a meaningful notion of reducibility when it comes to problems in either L
or NL. Although polynomial-time reducibility seems very appropriate for the generally complex class
of problems in both NP and PSPACE, since it turns out that ewvery problem in NL is polynomial
solvable, polynomial-time reducibility seems too strong for log-space problems (just as polynomial-
space reducibility is too strong for PSPACE). Instead, we introduce the notion of log space reducibility.

Definition 2.1. A transducer 7T is a type of Turing machine that consists of a read-only input tape,
a read-write scratchwork tape, and a write-only output tape T is called a log space transducer
iff it’s scratchwork tape uses O(logn) cells, where n i he input to T

< D N — O\K# DS;
m — 52 5 = Cmi\gsxaw Aong

((Definition 2.2. Function f : A — B is said to be log space computable iff there is a log space
transducer T for which f(x) = T'(z) for all x € A.

\?gbbmw\:“@ ’\}mx

Definition 2.3. Decision problem A is log space mapping reducible to decision problem B,
written A <; B, iff there exists a log-space-computable function f : A — B for which x is a positive
instance of A iff f(z) is a positive instance of B.

Administrator
Pencil

Theorem 2.4. If A <; B and(
P —- —

Proof Idea. Assume A <; B via log space computable function f : A — B, where f is computed by
T. Let Mp be the log space computing TM that decides B. We now describe a log space computing

TM @ that decides A.
.—-—ﬂ\

1. On input z, @’s ultimate goal is to simulate Mp on input f(z) and accept = iff Mp accepts

().

2. Problem: f(z) could be very large, as in polynomial with respect to |z|. Assume |f(z)| < en®
for constants ¢, k > 0. This assumption is validated Lemma 1.5 of the Space Complexity lecture.

3. Solution: repeat the following until the computation of Mg on input f(x) has been completed.
- —_— —
(a) For each step of the simulation of Mg on input f(z), keep track of the location i of Mp’s
read-only tape head.

(b) Before applying Mp’s d-transition function (which requires knowing the current input
symbol at location i), simulate 7" up to when 7" writes the ¢ th symbol w; on to the output
tape.

(¢) Usew; for the purpose of applying Mp’s o-transition function to obtain the next configuration.

4. Accept z iff B accepts f(z). r7 (\f\%is M_qup ° 5 Qx ?;

’ 1

Program (@ uses O(logn) space O)SQ 8 @\ . T\ 7(

1. Storing programs Mp and T requires O space %& \"\&'6 X O‘Q
2. Storing the current configuration of Mp requires OM> = O(logn) space since the size of '\J&,

any configuration in the computation Mp(f(x)) is logarithmic with respect to the size of f(z)
which is bounded by cn*.

3. Storing a configuration of T requires at most O(logn) space since T itself uses at most O(logn)
< @‘ ~
space.

4.”Similar to 2, the variable that holds the current location of Mp’s input head requirds O(log(cn®)) =
O(logn) space.

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

3 NL-Completeness

Definition 3.1. Decision problem B is said to be NL-complete iff

1. BeNL

2. for every other decision problem A € NL, A <; B.

A corollary to Theorem 2.4 (exercise) is that if any NL-complete language is in L, then L = NL.

-

———

Administrator
Pencil

Theorem 3.2. Path is NL-complete.

Proof Idea. Let A € NL be given arid suppose NTM N decides A using log space scratchwork.

1. Assume that N has a unique accepting configuration c¢,, regardless of input.

2. There is a constant d > 0 such that, for an input z of size n, the computation M (x) uses
configurations that may be written using at most dlogn tape cells.

3. Given instance x of A, with |z| = n, define the configuration graph G, = (V, E), where

(a) ¢ € Viff ¢ is a valid configuration for M (note: it’s possible that ¢ may never get used in
the computation M (x)), and

(b) (c1,¢2) € Eiff 5 is a possible next configuration given that ¢; is the current configuration
of some computation of M, assuming x as input.

4. There is a log space transducer T' for which, given input x € A, T'(x) outputs G, in a format
similar to the one described in Example 1.3. True, since

(a) T may go through all possible legal configurations of N that have size at most dlogn.

(b) For each legal configuration ¢ encountered, 7' then uses N’s d-transition function to list
all the configurations ¢ that are reachable from vertex c in one step, i.e. (¢,c) € E.

5. After writing G, T' then writes ¢, and ¢,, where ¢, is the initial configuration of the computation
N(x).

6. Therefore, = is a positive instance of A iff (G, c,,¢,) is a positive instance of Path, since N
accepts x iff there is a path of configurations from c, to c,. O

Corollary 3.3. NL C P.

Proof. Let A € NL be given and consider the reduction from A to PATH provided in the previous
theorem. This is not only a log space reduction, but it is also a polynomial time reduction (exercise!).
But, since PATH € P, it follows that A € P. In other words, any decision problem that is polynomial-
time reducible to a problem in P, must also be in P (exercise!). []

Corollary 3.4. TQBF ¢ NL.

Proof. By the Space Hierarchy Theorem, and the fact that every NL problem can be decided using
a polynomial amount of space, it follows that NL is properly contained in PSPACE. But TQBF is
PSPACE-complete and it can be shown that the mapping reduction used to prove this is in fact a log
space reduction. Thereore, if TQBF were in NL, then all of PSPACE would be contained in NL, which
contradicts the Space Hierarchy Theorem. O]

Administrator
Pencil

