
The LOG SPACE Complexity Class

Last Updated April 24th, 2024

1 Log Space

In this lecture we study decision problems that may be decided using O(log n) space, where n is the
input size. However, to do this we must modify the Turing machine definition so that a machine
now has two tapes: a read-only tape for holding the input, and a read-write scratchwork tape for
the purpose of computing on behalf of deciding the input. A computation configuration is similar to
that of the original TM model, but now the configuration must include a nonnegative integer that
indicates the current location of the read-only tape head.

Definition 1.1. Decision problem A is a member of L iff it is decidable by a DTM that uses O(log n)
scratchwork-tape cells when deciding an instance x of A for which n = |x|. Similarly, A is a member of
NL iff it is decidable by an NTM that uses O(log n) scratchwork-tape cells when deciding an instance
x of A for which n = |x|.

1

Example 1.2. Consider the language A consisting of all words of the form 0n1n for some k ≥ 0.
Then A ∈ L since a DTM M can count the number of 0’s that begin a word, and then count the
number of 1’s that follow. If the two counts are equal and the 1’s are not followed by a 0, then M
accepts. The two counters each require O(log n) amount of memory and therefore A ∈ L.

2

Example 1.3. An instance of decision problem Path is a triple (G, s, t), where G = (V,E) is a
directed graph, s, t ∈ V , and the problem is to decide if there is a path in G that starts at s and
ends at t. We may assume that G is represented in the following format:

u1 : (v11, . . . , vk11), . . . , un : (v1n, . . . , vknn),

were, e.g., the vertices v11, . . . , vk11 are the neighbors of u1 which is denoted as N(u1).

The following nondeterministic log-space algorithm proves that Path ∈ NL.

Name: can reach

Inputs: i) directed graph G = (V,E), ii) s ∈ V , iii) t ∈ V

Output: 1 iff there is a path in G from s to t.

If s = t, then return 1.

u = guess(N(s)).

Return can reach(G, u, t).

The algorithm will certainly return 1 on at least one branch iff t is reachable from s.

In terms of memory used, the algorithm only needs to store a copy of t and the current value of u.
Letting n = |V |, we see that both vertices may be encoded using O(log n) bits using a uniform-length
binary encoding scheme. Therefore, Path ∈ NL.

3

Administrator
Pencil

2 Log Space Reducibility

We would like to have a meaningful notion of reducibility when it comes to problems in either L

or NL. Although polynomial-time reducibility seems very appropriate for the generally complex class
of problems in both NP and PSPACE, since it turns out that every problem in NL is polynomial
solvable, polynomial-time reducibility seems too strong for log-space problems (just as polynomial-
space reducibility is too strong for PSPACE). Instead, we introduce the notion of log space reducibility.

Definition 2.1. A transducer T is a type of Turing machine that consists of a read-only input tape,
a read-write scratchwork tape, and a write-only output tape. T is called a log space transducer
iff it’s scratchwork tape uses O(log n) cells, where n is the size of the input to T .

Definition 2.2. Function f : A → B is said to be log space computable iff there is a log space
transducer T for which f(x) = T (x) for all x ∈ A.

Definition 2.3. Decision problem A is log space mapping reducible to decision problem B,
written A ≤L B, iff there exists a log-space-computable function f : A → B for which x is a positive
instance of A iff f(x) is a positive instance of B.

4

Administrator
Pencil

Theorem 2.4. If A ≤L B and B ∈ L, then A ∈ L.

Proof Idea. Assume A ≤L B via log space computable function f : A → B, where f is computed by
T . Let MB be the log space computing TM that decides B. We now describe a log space computing
TM Q that decides A.

1. On input x, Q’s ultimate goal is to simulate MB on input f(x) and accept x iff MB accepts
f(x).

2. Problem: f(x) could be very large, as in polynomial with respect to |x|. Assume |f(x)| ≤ cnk

for constants c, k > 0. This assumption is validated Lemma 1.5 of the Space Complexity lecture.

3. Solution: repeat the following until the computation of MB on input f(x) has been completed.

(a) For each step of the simulation of MB on input f(x), keep track of the location i of MB’s
read-only tape head.

(b) Before applying MB’s δ-transition function (which requires knowing the current input
symbol at location i), simulate T up to when T writes the i th symbol wi on to the output
tape.

(c) Use wi for the purpose of applyingMB’s δ-transition function to obtain the next configuration.

4. Accept x iff B accepts f(x).

Program Q uses O(log n) space.

1. Storing programs MB and T requires O(1) space.

2. Storing the current configuration of MB requires O(log(cnk)) = O(log n) space since the size of
any configuration in the computation MB(f(x)) is logarithmic with respect to the size of f(x)
which is bounded by cnk.

3. Storing a configuration of T requires at most O(log n) space since T itself uses at most O(log n)
space.

4. Similar to 2, the variable that holds the current location ofMB’s input head requires O(log(cnk)) =
O(log n) space.

5

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

3 NL-Completeness

Definition 3.1. Decision problem B is said to be NL-complete iff

1. B ∈ NL

2. for every other decision problem A ∈ NL, A ≤L B.

A corollary to Theorem 2.4 (exercise) is that if any NL-complete language is in L, then L = NL.

6

Administrator
Pencil

Theorem 3.2. Path is NL-complete.

Proof Idea. Let A ∈ NL be given and suppose NTM N decides A using log space scratchwork.

1. Assume that N has a unique accepting configuration ca, regardless of input.

2. There is a constant d > 0 such that, for an input x of size n, the computation M(x) uses
configurations that may be written using at most d log n tape cells.

3. Given instance x of A, with |x| = n, define the configuration graph Gx = (V,E), where

(a) c ∈ V iff c is a valid configuration for M (note: it’s possible that c may never get used in
the computation M(x)), and

(b) (c1, c2) ∈ E iff c2 is a possible next configuration given that c1 is the current configuration
of some computation of M , assuming x as input.

4. There is a log space transducer T for which, given input x ∈ A, T (x) outputs Gx in a format
similar to the one described in Example 1.3. True, since

(a) T may go through all possible legal configurations of N that have size at most d log n.

(b) For each legal configuration c encountered, T then uses N ’s δ-transition function to list
all the configurations c′ that are reachable from vertex c in one step, i.e. (c, c′) ∈ E.

5. After writingGx, T then writes cx and ca, where cx is the initial configuration of the computation
N(x).

6. Therefore, x is a positive instance of A iff (Gx, cx, ca) is a positive instance of Path, since N
accepts x iff there is a path of configurations from cx to ca.

Corollary 3.3. NL ⊆ P.

Proof. Let A ∈ NL be given and consider the reduction from A to PATH provided in the previous
theorem. This is not only a log space reduction, but it is also a polynomial time reduction (exercise!).
But, since PATH ∈ P, it follows that A ∈ P. In other words, any decision problem that is polynomial-
time reducible to a problem in P, must also be in P (exercise!).

Corollary 3.4. TQBF ̸∈ NL.

Proof. By the Space Hierarchy Theorem, and the fact that every NL problem can be decided using
a polynomial amount of space, it follows that NL is properly contained in PSPACE. But TQBF is
PSPACE-complete and it can be shown that the mapping reduction used to prove this is in fact a log
space reduction. Thereore, if TQBF were in NL, then all of PSPACE would be contained in NL, which
contradicts the Space Hierarchy Theorem.

7

Administrator
Pencil

