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1 Algorithmically Random Sequences

A bit sequence is an infinite sequence b0b1b2 · · · , where bi ∈ {0, 1} for each i ≥ 0. Moreover, we
wish to consider a bit sequence as existing in the same manner as other abstract and infinite objects
exist, such as the number π, and be able to prove properties about them. In particular, we wish to
define what is meant by a “random bit sequence” where, intuitively, such a sequence is the result of
independently tossing a fair coin (0 for heads, 1 for tails) an infinite number of times.

In what follows we now describe how probability and computability theory come together to formalize
the concept of a random bit sequence.

1.1 Probability Measure Space

Using probability theory, mathematicians have been able to prove several interesting facts about
random bit sequences. For example, the Law of Large Numbers (LLN) implies that, with probability
one,

b0 + b1 + · · ·+ bn−1

n
→ 1

2

for increasingly large values of n. But what is meant by “probability one”? For finite probability
distributions this means that an event will occur with certainty, meaning that every time one conducts
an experiment and tests for the event’s occurrence, the test will always result in positive.

But what about an event, such as a random bit sequence satisfying the Law of Large Numbers? Such
an event cannot be observed due to its reliance on an infinite amount of information. In this case
“probability one” means that the measure of those sequences that do not satisfy LLN is equal to
zero, meaning that, although it is possible that a sequence does not satisfy LLN, the set of all such

1



sequences can be placed in an arbitrarily small “cover”. These concepts are formalized in what is
called a probability measure space which is triple (S, E , µ) consisting of a sample space S, an
event space E , and a probability measure µ, all three of which are defined in the following sections.
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1.2 Sample space

The first ingredient of a probability measure space is referred to as the sample space S which gives
the set of possible outcomes of some experiment.

Example 1.1.

The following are some examples of experiments along with their associated sample spaces.

Tossing a Fair Coin S = {H,T}

Rolling a Pair of Dice S = {2, 3, . . . , 12}

Observing the Location of an Object in 3D Space S = R3

Example 1.2. For the experiment of generating a bit sequence by tossing a fair coin an infinite
number of times, the sample space is S = {0, 1}∞. Although a sample can never be fully observed, we
nonetheless acknowledge its mathematical existence and the existence of the entire sample space.
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1.3 Event Space

The second ingredient of a probability measure space is referred to as the event space E whose
members are subsets of S. We say that a set A ∈ E is measurable in the sense that there is a way
to assign a probability to A. For finite and discrete sample spaces, the most commonly used event
space is the power set of S, since in this case a probability can be assigned to each possible sample,
and thus to each subset of samples (by summing the probabilities of the samples in the subset). In
any case, it is required that the members of E form a Boolean algebra meaning that

1. ∅,S ∈ E

2. If A ∈ E , then A ∈ E

3. If A,B ∈ E , then A ∪B ∈ E and A ∩B ∈ E .

Example 1.3. Consider the experiment of rolling a pair of dice. The sample space is S = {2, 3, . . . , 12},
while the event space is P(S), the power set of S. Examples of events include {2} the event of rolling
a “2”, {2, 4, 6, 8, 10, 12}, the event of rolling an even number, and {7, 11} the event of rolling a winning
number in the first roll of a craps game.
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For finite and countable sample spaces a Boolean-algebra event space is usually sufficient for describing
the experimental events of interest. However, for an uncountable sample space it is more common to
require that the members of E form a σ-algebra.

Definition 1.4. A σ-algebra is a Boolean algebra that is closed under infinite unions and intersections.

A σ-algebra is usually defined by starting with an existing Boolean algebra A of “basic” sets and
then defining the associated σ-algebra E to be the smallest σ-algebra that contains A. This idea is
well defined since

1. any Boolean algebra A satisfies
A ⊆ P(S),

2. the power set P(S) is a σ-algebra,

3. and the intersection of any number of σ-algebras is itself a σ-algebra.

Therefore, there is a unique “smallest” σ-algebra containing A, namely the intersection of all σ-
algebras that contain A. Henceforth, we denote by σ(A) the smallest σ-algebra that contains Boolean
algebra A.

The preference of having a σ-algebra event space for an uncountable sample space stems from the
existence of interesting events that cannot be expressed as a finite union or intersection of basic
events.
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Example 1.5. For the sample space {0, 1}∞, a minimal prefix set is one of the form A{0, 1}∞,
where A ⊆ {0, 1}∗ is a finite minimal prefix code, meaning that it is a prefix code and, for any
w ∈ {0, 1}∗, either w0 ̸∈ A or w1 ̸∈ A, since otherwise both w0 and w1 could be replaced by w to
obtain a smaller prefix code. Letting M denote the set of minimal prefix sets, it is an exercise to
show that M is a Boolean algebra where, e.g.,

C{0, 1}∞ = A{0, 1}∞ ∩B{0, 1}∞

implies that C is a minimal prefix code. Letting A = {01, 11, 101, 1000}, andB = {00, 101, 110, 0100},
compute A{0, 1}∞ ∪B{0, 1}∞, A{0, 1}∞ ∩B{0, 1}∞, and A{0, 1}∞.

Solution.
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1.4 Probability measure

The final ingredient of a probability measure space is a probability measure µ : E → [0, 1], where
µ satisfies what are referred to as Kolmogorov’s axioms of probability, namely that

1. µ(S) = 1 and

2. If A1, A2, . . . is an infinite sequence of disjoint events, then

µ(
∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai).

Proposition 1.6. Let (S, E , µ) be a probability measure space. Then the following statements hold
for arbitrary A,B ∈ E .

1. µ(∅) = 0

2. µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B)

3. µ(A) = 1− µ(A)

Proof. We prove the first two statements and leave the third as an exercise. By Axiom 2, µ(A) =
µ(A ∪ ∅) = µ(A) + µ(∅) which implies µ(∅) = 0.

For proving the second statement, first it is an exercise to show that a σ-algebra is closed under
set difference. In other words, if A,B ∈ E , then A − B ∈ E . Then by Axiom 2 we have µ(A) =
µ(A−B)+µ(A∩B), which implies µ(A−B) = µ(A)−µ(A∩B). Similarly, µ(B−A) = µ(B)−µ(A∩B).
Also by Axiom 2,

µ(A∪B) = µ(A−B)+µ(B−A)+µ(A∩B) = (µ(A)−µ(A∩B))+(µ(B)−µ(A∩B))+µ(A∩B) =

µ(A) + µ(B)− µ(A ∩B).

Notice that, by Axiom 2 and the above proposition, if µ is defined over an algebra A of sets, then it
is also defined over σ(A). This is because every countable union of sets belonging to E = σ(A) may
be written as a countable union of disjoint sets belonging to E , and thus its probability measure can
be computed via Axiom 2. Secondly, the probability measure of a countable intersection of sets may
be computed by first computing the measure of its complement and subtracting that value from 1.
Moreover, the complement of a countable intersection is a countable union of sets in E and thus may
be computed based on the previous comment.
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Example 1.7. For the algebra M defined in Example 1.5, we may define

µ(A{0, 1}∞) =
∑
w∈A

2−|w| ≤ 1

by Kraft’s inequality.
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2 Martin-Löf Random Sequences

Definition 2.1. A set of words W ⊆ {0, 1}∗ is recursively enumerable (r.e.) iff there is a
computable function f : N → {0, 1}∗ for which

W = range(f).

Since all computable functions may be effectively listed, we may assume that there is an effective
listing of all r.e. sets: W0,W1, . . ..

Definition 2.2. Set B ⊆ {0, 1}∞ is said to be a constructive null set iff there exists a total
computable g : N → N for which

B =
∞⋂
i=0

Wg(i){0, 1}∞

and µ(Wg(i)) ≤ 1
2i
. Moreover, the collection {Wg(i)|i ≥ 0} is called a constructive null cover for B.

Definition 2.3. The set of bit sequences NULL is defined as

NULL =
⋃

{B : B is a constructive null set},

while RAND is defined as
RAND = {0, 1}∞ −NULL.

Any bit sequence in RAND is called a Martin-Löf random sequence since the above definitions
are attributed to Per Martin-Löf. Notice that, since there is only a countable number of constructive
null covers and each constructive null set has probability measure 0, it follows that RAND has
probability measure one.

Martin-Löf’s definition of randomness is widely accepted as having captured the essence of randomness
among bit sequences. To understand why, consider theorems in probability theory of the given type:
“Let X0, X1, . . . be a sequence of binary random variables that are independent and for which Xi is
the result of tossing a fair coin, then with probability one...[some property holds with respect to the
values assumed by the random variables].” In other words, the set B of sequences that do not have
this property has probability measure zero and is called the null set for the given property. Moreover,
for all such known probability theorems, all null sets can be shown to be constructive, meaning that
every sequence in RAND satisfies all such known theorems. Conversely, given a constructive null
set B, there is a provable theorem (why?) that states “with probability one, the sequence formed
from X0, X1, . . . is a member of RAND.
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Example 2.4. Suppose s ∈ {0, 1}∞ satisfies s2i = 1 for all i = 0, 1, 2, . . .. Then letting

Vn = {0, 1}11{0, 1}1{0, 1}31 · · · {0, 1}2n−11,

for n ≥ 0, we have

s ∈
∞⋂
n=0

Vn{0, 1}∞

and, since µ(Vn) =
1

2n+1 and the words in Vn are recursively enumerable, s ∈ NULL.

The following theorem is due to Per Martin-Löf.

Theorem 2.5. Bit sequence s ∈ RAND iff there is a constant c, independent of n, for which

K(s[1 . . . n]) ≥ n− c.
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3 Autoreducibility of Random Sequences

Definition 3.1. An oracle URM program is a URM program that has an additional type of
instruction Q(i), called the query instruction, which has the effect of replacing the contents of
register Ri with a value that is returned by a B-oracle that is capable of solving in a single step a
natural-number instance of some decision problem B.

Example 3.2. Suppose an oracle program is using a Prime-oracle and has the value 5 stored in
register R2. Then, after the execution of instruction Q(2), R2 will now hold the value 1 since 5 is a
positive instance of Prime. On the other hand, if R2 later holds the value 22, then, after executing
Q(2), R2 will now hold the value 0, since 22 is a negative instance of Prime.
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Definition 3.3. Let A be a decision problem and suppose oracle URM program P computes A’s
decision function dA(x) when using a B-oracle. Then we say that A is Turing reducible to B, and
write

A ≤T B.

From here onward we will use the terms “bit sequence” and “decision problem” interchangeably since
associated with every decision problem A is the bit sequence

dA(0)dA(1)dA(2) · · · .

Similarly, every bit sequence may be viewed as a decision problem for which dA(i) equals the i th bit
of the sequence.

12



Definition 3.4. Bit sequence A is autoreducible iff it is Turing reducible to itself via oracle program
P and, for all x ≥ 0, during the computation of P (x), whenever P queries the A-oracle via query
instruction Q(i), x is not stored in Ri. In other words, P never queries A about x in order to compute
P (x).

Notice that every decidable decision problem is autoreducible since such a problem can be decided
using a non-oracle URM program. But what about a bit sequence A ∈ RAND? If on input x an
oracle program P is unable to query A about x, then, considering that random sequences are formed
by independent fair-coin tosses, it would seem that P would have to “guess” A(x) and would be
correct about 50% of the time in the long run. Thus, P would incorrectly decide A. On the other
hand, what if we relaxed the definition so that P did not have to guess all the time, but only had to
guess infinitely often.

Definition 3.5. Bit sequence A is i.o. autoreducible iff it is Turing reducible to itself via oracle
program P and, for an infinite number of x ≥ 0, during the computation of P (x), whenever P queries
the A-oracle via query instruction Q(i), x is not stored in Ri. In other words, for an infinite number
of x, P never queries A about x in order to compute P (x).

At first glance it appears that for i.o. autoreducibility we run into the same problem as with total
autoreducibility: since P still has to make an infinite number of guesses it is doomed to error 50%
of the time and thus could not correctly decide A.

We now prove the following remarkable result.

Theorem 3.6. Every random sequence is i.o. autoreducible.
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To prove Theorem 3.6 we need the following lemma.

Lemma 3.7. (Borel-Cantelli Lemma) Given a probability meaure space (S, E , µ) and eventsA1, A2, . . . ∈
E , if

∞∑
i=1

µ(Ai) < ∞,

then the probability that an infinite number of the events will occur has measure zero. In other
words, with probability one, only a finite number of the events will occur.

Proof. The event that an infinite number of the Ai occur can be expressed as an event in E since it
corresponds with the set

∞⋂
n=1

⋃
k≥n

Ak.

Indeed, for a sample of S that appear in the intersection it must be the case that the sample appears
in infinitely many Ai. This is true since, for n > i each Ai is not a member of the inner union and
so, if a sample were only in a finite number of the Ai it would eventually be excluded from the inner
union.

Finally, the above set indicates that the probability of an infinite number of Ai events occurring is
less than or equal to ∑

k≥n

µ(Ak)

which converges to 0 as k increases.
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3.1 The Hat Problem

Statement of the Problem. n players on a team are each randomly assigned a hat, either red
or blue in color. The team wins a one-million dollar prize provided at least one of the players can
guess the color of the hat he is wearing and no player guesses incorrectly. Each player may view the
hats of his teammates but cannot view his own hat. Although the players can collaborate to form
a guessing strategy before the game begins, they are not allowed to communicate with each other
during the game. What strategy should the team adopt in order to maximize its chance of winning?
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3.2 Solution to the Hat Problem

To begin, order the players from 1 to n and identify the resulting hat-color sequence with a binary
word, called the observed word, whose i th bit equals 1 iff player i is assigned a blue hat i = 1, . . . , n.
Moreover, we assume that the team adopts a deterministic strategy in the sense that player i is given
a guess book Gi that contains all the possible observed words that would cause him to guess the
color of his hat. For example, if w ∈ Gi, then if player i observes that bits 1 through i − 1 of the
observed word equal w[1 : i− 1] and bits i+ 1 through n equal w[i+ 1 : n], then he guesses his hat
color to be wi. Now associated with player i’s guess book is an error set Ei defined as

u ∈ Ei iff ∃w ∈ G such that u = w ⊕ ei,

where ei denotes the ith basis vector of {0, 1}n and consisting of all zeros except for a one in position
i. Thus, we have

|Ei| = |Gi|

for all i = 1, . . . , n and thus the solution to the Hat Problem involves

1. minimizing the cardinality of the set

E =
n⋃

i=1

Ei,

and

2. maximizing the cardinality of the set

G =
n⋃

i=1

Gi.

We call the members of E error words and call the members of G good words..
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Definition 3.8. A 1-ball with center c ∈ {0, 1}n is the set of words

{c, c⊕ e1, . . . , c⊕ en}.

All non-center words of a 1-ball are referred to as the ball’s surface. Finally, the notation B(c)
represents a 1-ball whose center is c ∈ {0, 1}n.

Proposition 3.9. Let E be a minimum set of error words amongst all possible deterministic guessing
strategies. Then

|G| ≤ n|E|,

with equality iff the set of 1-balls
{B(v)|v ∈ E}

are all pairwise disjoint and all surface words of each ball belonging to G.

Proof. Consider the map f : G → E × {1, . . . , n} where f(w) = (v, i), where i is the least index for
which w ⊕ ei ∈ E . This map is well defined since, for every good word w, there is a player i who,
when viewing w[1 : i− 1] and w[i+ 1 : n] guesses his hat color as wi. Thus, w⊕ ei ∈ E . Moreover, f
is a one-to-one function (verify!) and therefore

|G| ≤ |E × {1, . . . , n}| = n|E|.

Moreover, notice that equality holds iff

1. for every w ∈ G, there is a unique v and i for which w = v ⊕ ei and

2. for every v ∈ E and index i ∈ {1, . . . , n} there is a w ∈ G for which f(w) = (v, i).

But these items are equivalent to the set of 1-balls

{B(v)|v ∈ E}

being pairwise disjoint and all surface words of each ball belonging to G.

Proposition 3.9 suggests that, to optimize their chance of winning, the team must find a set of 1-balls
whose surfaces together form a maximum set of words within {0, 1}n and for which no ball center
is on the surface of any other ball. Generally speaking, finding such a set of balls is considered
a complex computational problem. However, in the case that n + 1 is a power of 2, the problem
becomes readily solvable. In this case, assuming n + 1 = 2k then there exist 2n−k non-overlapping
1-balls whose union is {0, 1}. Moreover, each 1-ball has exactly one error word and n good words,
yielding an optimal probability equal to n/(n+1) of winning the prize! To prove this we review some
matrix theory.
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Definition 3.10. The rank of a matrix A, denoted rank(A), is the dimension of the A’s column
vector space.

Definition 3.11. The nullity of a matrix A, denoted nullity(A), is the dimension of the vector space
of vectors x⃗ for which Ax⃗ = 0⃗.

Theorem 3.12. (Rank Theorem for Matrices) If A is a matrix with n columns, then

rank(A) + nullity(A) = n.

Proof. Let k = rank(A) ≤ r be given, where r is the number of rows of A. To determine A’s null
space, the standard procedure is to solve the homogeneous system of r linear equations, where the
ith equation is

ai1x1 + ai2x2 + · · ·+ ainxn = 0.

Of course, A itself is the matrix associated with this system and, by applying the Gauss-Jordan
variable elimination algorithm, we may transform A and the associated system of equations into a
matrix/system of the form (

Ik B
0 C

)
,

where Ik is the k× k identity matrix, B is a k× (n− k) matrix, and C is a (r− k)× (n− k) matrix.
Thus, for any assignment of the variables xk+1 through xn−k, there is a unique assignment to the
variables x1 through xk which satisfies the associated system of equations. Therefore, the NULL
space has dimension n− k, and the theorem is proved.
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Theorem 3.13. Suppose n + 1 = 2k, and consider the k × n matrix A whose ith column is the
number i written in binary. Then the following statements are true.

1. rank(A) = k

2. nullity(A) = n− k

3. The NULL space of A over the binary field {0, 1} has 2n−k vectors.

4. For every bit vector v⃗ ∈ {0, 1}n for which Av⃗ ̸= 0⃗, there is a unique null vector c⃗ for which
v⃗ = c⃗+ e⃗i, for some i = 1, . . . , n.

5. {0, 1}n consists of 2n−k pairwise disjoint 1-balls, where the center of each ball is a null vector.

Proof. Statements 1 and 2 directly follow from the Rank theorem. Statement 3 follows from the
fact that, since the NULL space has n− k basis vectors, there are a total of 2n−k linear combinations
that can be formed with these vectors. Moreover, by linear independence of the basis vectors, each
linear combination forms a distinct vector and hence there are 2n−k such vectors.

As for Statement 4, first notice that Ae⃗i = (i)2 for every i (verify!) and let v⃗ ∈ {0, 1}n be given with
Av⃗ = y⃗ ̸= 0⃗. Then, A(v⃗ ⊕ e⃗y) = 0⃗ since

A(v⃗ ⊕ e⃗y) = A(v⃗)⊕ A(e⃗y) = (y)2 ⊕ (y)2 = 0⃗.

Thus v⃗ ⊕ e⃗y = c⃗, where c⃗ is a null vector. Conversely, if v⃗ = c⃗′ ⊕ e⃗i, for some null vector c⃗′ and
i ∈ {1, . . . , n}, then

A(v⃗) = (y)2 = A(c⃗′ ⊕ e⃗i) = A(c⃗′)⊕ A(e⃗i) = 0⃗⊕ (i)2 = (i)2 ⇒ (y)2 = (i)2 ⇒ i = y.

But then,
c⃗⊕ e⃗i = c⃗′ ⊕ e⃗i

and we get c⃗ = c⃗′ after cancelling e⃗i from both sides.

Finally, Statement 5 follows from the previous statment which implies that the 1-balls centered at
each of the null vectors are pairwise disjoint. Moreover, each of the 2n−k 1-balls contains n+ 1 = 2k

vectors for a total of 2n−k · 2k = 2n total vectors which is all of {0, 1}n.
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Corollary 3.14. For a team consisting of n = 2k−1 players, the optimal strategy is to assign player
i a guess book Gi consisting of all 2n−k binary words of the form c + ei, where c⃗ is a null vector of
the matrix A defined in Theorem 3.13.

.

Proof. From Proposition 3.9 and Statement 5 of Theorem 3.13, we see that by assuming the null
vectors of A are the error words, the good words must be those words on the surface of each 1-ball
centered by an error word. Moreover, based on how each Gi is defined, for each good word, there is
exactly one player who will guess in case that word represents the hat color sequence. Moreover, the
guess will be correct so long as the color sequence does not represent a null vector which happens
with probability 1/(n+1). Therefore, the strategy yields the optimal probability of winning: namely
n/(n+ 1).
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Example 3.15. Provide the guess books for each player in case n = 3.
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Example 3.16. Suppose the Hat Problem game is played with seven players. Will the team win if
the hat color sequence is 1000101? For each i, list the outputs that player i observes when toggling
his bit i.
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3.3 Proof of Theorem 3.6

Partition the sequence 0, 1, 2, . . . into finite nonoverlapping sequences s0, s1, s2, . . . so that

s1, s2, . . . = 0, 1, 2, . . .

and |si| = 2i− 1, for all i ≥ 1. For given x ∈ N , let seq(x) denote the index of the sequence to which
x belongs, and order(x) denote x’s order in the sequence. For example, if x = 12, then seq(x) = 4
and order(x) = 2. This is because s4 = 11, 12, 13, . . . , 25 and 12 is the 2nd number in this sequence.

Now consider the following oracle program P .

Input x.

Let k = seq(x).

Let n = |sk| = 2k − 1.

Let Mk denote the k × n matrix whose columns are the numbers 1 through n expressed in
binary.

Let i = order(x).

Let x1, . . . , xi, xi+1, . . . , xn denote the numbers in sk.

//Learn every bit except for A(x)

Query the oracle to obtain its bits A(x1), . . . , A(xi−1), A(xi+1), . . . , A(xn).

For i = 0, 1, let wi = A(x1) · · ·A(xi−1) · i · A(xi+1) · · ·A(xn).

For i = 0, 1, if Mk(w⃗i) = 0⃗, then return i. //Guess that A(x) = i

Return query(x). //Forgo guessing and query the oracle

The program behaves in a way that, on input x, it behaves like player i in a Hat-Problem game
having n = |sk| = 2k − 1 players. Moreover, with probability n/(n+1) exactly one player will guess,
and guess correctly. On the other hand, with probability

1

n+ 1
=

1

2k

every player in this game will guess incorrectly. Thus, by the Borel-Cantelli lemma and since

∞∑
k=1

1

2k
= 1 < ∞,

with probability one there will only be a finite number of incorrect guesses despite there being an
infinite number of (independent) games.
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Finally, suppose we designate A ∈ RAND to be the oracle. Then, since the set of sequences that
would cause an infinite number of incorrect guesses can be shown to be a constructive null set,
it follows that when using A as oracle results in only a finite number of incorrect guesses. Let
y1, y2, . . . , yr ∈ N denote the bit places for where an incorrect guess was made. Then modify P to
make a new program P ′ so that it first checks if x = yi for some i = 1, . . . , r, and, if so, returns
A(yi). Then P ′ decides A and, in the course of doing so makes an infinite number of bit guesses,
with each guess being correct. Therefore, A was aribtrary, every Martin-Löf random sequence is i.o.
autoreducible.
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