
CECS 329, Exam 2 Spring 2024, Dr. Ebert

Directions: Solve AT MOST SIX problems. Closed Notes but you may use a non-
programmable scientific calculator. Solve each problem on a separate sheet of paper.
For example, if you decide to solve all six problems, then you should submit six pages,
one for each problem. Make sure your name is on each page.

Unit-2 LO’s

LO5. Solve the following.

a. What does it mean for a unary function f(x) to be URM-computable? Explain. (5 pts)

Solution. There is a URM program P for which P (x) = f(x) for all x ∈ N .

b. Provide the instructions of a URM program that computes the function f(x, y) = x mod y.
You may assume that y ≥ 1. (15 pts)

Solution.

i. J(1, 3, 9)

ii. J(2, 4, 7)

iii. J(1, 3, 9)

iv. S(3)

v. S(4)

vi. J(1, 1, 2)

vii. Z(4)

viii. J(1, 1, 1)

ix. T (4, 1)

c. Describe the role each register plays in computing f(x). (5 pts)

Solution. R1 and R2 store the inputs x and y. R3 counts up to x. R4 counts up to y and
resets each time the count reaches y. Once R3 counts up to x, whatever is in R4 should
be output, since this represents the remainder.

LO6. Solve the following problems.

a. Provide the URM program P whose Gödel number equals

230 + 274 + 2112 + 2137 − 1.

Show all work. (10 pts)

Solution. P = T (4, 1), J(1, 1, 6), S(10), Z(7)

b. Let P be a URM program that accepts two inputs x and y. What does it mean for P to
be universal? (5 pts)

Solution. P is universal iff P (x, y) = Px(y) for all x, y ∈ N .

1

c. A universal program PU is simulating a program that has 113 instructions and whose
Gödel number is

x = 23 + 2179 + 2191 + 2196 + 2224 + 2268 + · · ·+ 2c113 − 1.

If the current configuration of the computation of Px on some input has encoding

σ = 25 + 214 + 216 + 223 + 228 − 1,

then provide the next configuration of the computation and its encoding. (10 pts)

Solution. Current configuration: c = (5, 8, 1, 6, 4). β(I4) = 4 and so I4 = Z(2) and next
configuration is

cnext = (5, 0, 1, 6, 5)

which has encoding
25 + 26 + 28 + 215 + 221 − 1.

LO7. Answer the following. Note: correctly answering two of the three constitutes a pass.

a. Describe what it means to be a positive instance of the Self Accept decision problem.
(5 pts)

Solution. See Section 5 of the “Undecidability and Diagonalization Method” lecture.

b. In applying the diagonalization method towards proving the undecidability of Self Accept,
we defined a computable function g(x) in terms of f(x), the decision function for Self

Accept, which we assume to be total computable. Provide the formula for computing
g(x) and describe what needs to be established about g(x) in order for the diagonalization
method to be successful. (10 pts)

Solution. See Section 5 of the “Undecidability and Diagonalization Method” lecture. We
must show that g is different from each ϕi, i ≥ 0, which contradicts g’s own computability.

c. Suppose URM program P60 computes ϕ60(x) and that

ϕ60(x) =

{
⌊x/3⌋ if x is divisible by 3
↑ otherwise

What is the value of g(60)? Show that g ̸= ϕ60. (10 pts)

Solution. Since 60 is divisible by 3, ϕ60(60) = 20 and so P60 halts on its own Gödel
number 60. Thus g(60) =↑ (see the lecture for a solution to part b). Thus, g ̸= ϕ60 since
they differ at input 60.

LO8. An instance of Self Output is a Gödel number x and the problem is to decide if Px outputs
its own Gödel number x, i.e. there is an input y for which Px(y) = x. Consider the function

g(x) =

{
1 if Px outputs its own Gödel number x
0 otherwise

a. Evaluate g(16), g(78), and g(81), where (3 pts each)

i. ϕ16(y) = y2.
Solution. g(16) = 1 since ϕ16(4) = 16 and so P16 outputs its own Gödel number.

2

ii. ϕ78(y) = 2y.
Solution. g(78) = 1 since ϕ78(39) = 78 and so P78 outputs its own Gödel number.

iii. ϕ81(y) = 5y.
Solution. g(81) = 0 since there is no y for which ϕ81(y) = 5y = 81. This is true since
5 does not divide evenly into 81.

b. Prove that the function g(x) is not URM computable. In other words, there is no URM
program that, on input x, always halts and either outputs 1 or 0 as output, depending on
whether or not Px outputs its own Gödel number x. Do this by writing a program P that
uses g and makes use of the self programming construct. (10 pts)

Solution.

Input y.

If g(self) = 1, then loop forever.

Else //g(self) = 0

Return self.

c. Use a proof by cases to show that your program P from part b behaves inconsistently with
how g evaluates P ’s Gödel number. Conclude that g is not total computable and hence
Self Output is undecidable. (6 pts)

Solution. Let e denote the Gödel number of P .

Case 1: g(e) = 1. Then P outputs e for some input, but this contradicts the fact that P
loops forever on every input.

Case 2: g(e) = 0. Then P never outputs e on some input which contradicts the fact that
P outputs e on every input.

Therefore, Self Outputmust be undecidable since assuming otherwise leads to a contradiction.

Advanced Problems

A1. Solve/answer the following.

(a) Formally state Kleene’s 2nd Recursion Theorem. (10 pts)

Solution. See Page 3 of Self Referencing Programs lecture.

(b) Explain the main application of Kleene’s 2nd Recursion Theorem in relation to computer
programming. (5 pts)

Solution. The theorem legitimizes and supports the use of the self programming
construct which allows programming statements that access the Gödel number of the
program being written.

(c) The proof of Kleene’s 2nd Recursion Theorem involves defining a URM program P =
ABC, where A, B, and C are subprograms that are concatenated together to form P .
Explain the role played by each subprogram. Please include information on the effect each
has on the machine’s registers R1 and R2 (assuming the URM model of computation). (15
pts)

Solution. See Page 5 of Self Referencing Programs lecture.

3

A2. Answer the following.

(a) Prove that there is a total computable function k(x) for which ϕk(x)(y) = x. (10 pts)

Solution. We know that g(x, y) = x is a computable function. Thus, by the SMN
Theorem, there is a total computable function k(x) for which

ϕk(x)(y) = x.

(b) Use the program encoding functions to provide a mathematical formula for the value of
k(x) on some input x. Hint: you may find useful the geometric series formula

1 + a+ a2 + · · ·+ ak = (ak+1 − 1)/(a− 1). (20 pts)

Solution. Given x, the simplest program that can compute the function f(y) = x is
P = Z(1), S(1), S(1), . . . , S(1), where there are x S(1) statements. Thus,

γ(P) = 20 + 22 + 24 + · · ·+ 22x = 1 + 4 + 42 + · · ·+ 4x =
4x+1 − 1

3
.

A3. An instance of Empty is a Gödel number x and the problem is to decide if Px has an empty
domain, meaning that it never halts on any input. Alicia wants to use the diagonalization
method the prove that Empty is undecidable. Letting dEmpty denote the decision function for

Empty, she defines the antagonist function g(x) as

g(x) =

{
1 if dEmpty(x) = 1

↑ otherwise

(a) For a diagonalization proof to work, what must be achieved by g(x)? (10 pts)

Solution. We must show that g(x) ̸= ϕi(x) for every i ≥ 0.

(b) Does g(x) succeed? If yes, provide a proof. Otherwise, provide an example where g fails.
(15 pts)

Solution. Suppose ϕi(x) is undefined on all inputs. Then ϕi(i) =↑ while g(i) = 1. Hence,
g ̸= ϕi. On the other hand, assume ϕi(x) is not undefined for every input x. In other
words, dEmpty(i) = 0 and so g(i) =↑. But it is possible that ϕi(i) =↑ since ϕi does not

necessarily have to be undefined at x = i. Therefore, it is possible that g = ϕi in which
case a contradiction cannot be guaranteed.

A4. Consider the function m(x) which, on input x, returns the least y for which Py computes
function ϕx. In other words, Py is a minimal program for ϕx. Prove that m(x) is not a
computable function. Hint: assume m(x) is computable and write a program that uses the
self-programming construct to create a contradiction. (30 pts)

Solution. Consider the following program P .

Input z.

For each x = 0, 1, 2, . . .,

Compute y = m(x).

If y > self, then break.

4

Simulate Py on input z and return whatever is returned by Py on input z.

Note that, since there are an infinite number of minimal programs (why?) there must be some
y that exceeds P ’s Gödel number. Moreover, P (z) = Py(z) for every z which means that there
is a program that computes the same function that is computed by Py and whose Gödel number
is less than y which contradicts the minimality of Py. Therefore, m is not total computable.

Unit-1 LO’s

LO1. Solve the following.

(a) Provide the definition of what it means to be a mapping reduction from decision problem
A to decision problem B.

Solution. See Definition 2.1 of Mapping Reducibility lecture.

(b) Let S = {7, 12, 15, 19, 21, 35, 47, 48} be an instance of Set Partition (SP). Provide f(S),
where f : SP → SS is the mapping reduction from SP to Subset Sum provided in lecture.

Solution. f(S) = (S, t = M/2) = (S, t = 102), where M =
∑

s∈S s.

(c) Using the problem instances in part b, verify that f maps a positive instance of SP to a
positive instance of SS.

Solution. A = {15, 19, 21, 47} and B = {7, 12, 35, 48} forms the desired set partion of S,
while A’s members sum to t = 102. Hence, both S and (S, t = M/2 = 102) are positive
instances of their respective decision problems.

LO2. An instance of Composite is a positive integer n ≥ 2 and the problem is to decide if there is a
number m, such that 2 ≤ m < n and for which m divides evenly into n.

(a) For a given instance n of Composite, describe a certificate in relation to n.

Solution. Certificate m is an integer in the interval [2, n− 1].

(b) Provide a semi-formal verifier algorithm that takes as input i) an instance n of Composite,
and ii) a certificate for n as defined in part a, and decides if the certificate is valid for n.

Solution. Return n mod m = 0.

(c) Which is a better size parameter for instance n: n itself or parameter b that represents
the number of bits needed to represent n? Explain.

Solution. b is better since it reflects the actual size of n in terms of number of bits needed
to represent n.

LO3. Recall the mapping reduction f(C) = (S, t), where f maps an instance of 3SAT to an instance
of the Subset Sum decision problem. Given 3SAT instance

C = {(x1, x2, x3), (x2, x3, x4), (x1, x2, x4), (x1, x3, x4)}

answer the following questions about f(C). Hint: to answer these questions you are not required
to draw the table, but you might find it helpful.

5

(a) What is the value of t?

Solution. m = |C| = 4 and n = 4 is the number of variables. Therefore, t = 11, 113, 333
(n = 4 1’s followed by m = 4 3’s).

(b) How many numbers (counting repeats) are in S? What is the largest (in terms of numerical
value) number in S?

Solution. There are 2m + 2n = 16 (not necessarily distinct) numbers in S. The largest
is y1 = 10, 001, 010

(c) Determine a satisfying assignment for C and use it to identify a subset A of S that sums
to t. List all the members of A. Hint: there are multiple possible answers, but the subset
you choose must correspond with your chosen satisfying assignment.

Solution. Solutions may vary. One possible satisfying assignment is α = (x1 = 1, x2 =
1, x3 = 0, x4 = 1). Hence, f(C) is a positive instance of Subset Sum via subset S =
{y1, y2, z3, y4, g1, h1, g2, h2, g4, h4}.

LO4. Answer the following questions. Correctly answering at least two of the three is sufficient for
passing LO4.

(a) Provide the definition of what it means for a decision problem to be NP-complete. (6 pts)

Solution. See Complexity Lecture Definition 5.1.

(b) Describe the three main steps that must be completed in order to establish that a decision
problem L is a member of NP. Clearly define all technical terms. Hint: your three steps
should make reference to two different technical terms that need defining.

Solution. See Complexity Lecture Definition 4.1.

(c) Provide the chain of mapping reductions that is needed to establish that the Vertex Cover

(VC) decision problem is NP-complete, assuming that IS ≤p
m VC is one of the reductions,

and the other reductions all appeared as examples in either the Mapping Reducibility or
Computational Complexity lecture.

Solution. We have
SAT ≤p

m 3SAT ≤p
m Clique ≤p

m IS ≤p
m VC.

6

