
CECS 329, Exam 1 Spring 2024, Dr. Ebert

NONOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION
ALLOWED. Solve each of six problems on a separate sheet of paper. For example, if you decide
to solve all six problems, then you should submit six pages, one for each problem. Make sure your
name is on each page.

Problems

1. Solve the following.

(a) Provide the definition of what it means to be a mapping reduction from decision problem
A to decision problem B. Note: scoring 20 or more points is sufficient for passing LO1.
(5 pts)

Solution. See lecture notes.

(b) Let S = {6, 11, 13, 22, 23, 26, 27, 46} be an instance of Set Partition (SP). Provide f(S),
where f : SP → SS is the mapping reduction from SP to Subset Sum provided in lecture.
(10 pts)

Solution. We have
M =

∑
s∈S

s = 174.

Thus, f(S) = (S, t = M/2 = 87).

(c) Using the problem instances in part b, verify that f maps a positive instance of SP to a
positive instance of SS. (10 pts)

Solution. f(S) = (S, t = M/2 = 87) is positive for Subset Sum since A = {11, 23, 26, 27}
sums to 87. This means that A and S −A forms a set partition since both sum to 87 and
hence S is a positive instance of SP.

2. An instance of the MineSweep decision problem is a simple graph G = (V,E) and a map
val : V → N for which some of G’s vertices are labeled with a positive integer. Namely, if
val(v) = 0, then v is not labeled, but if val(v) > 0, then val(v) gives the value of the label.
Note: correctly solving this problem counts for passing LO2.

The problem is to decide if there is a way to place mines on some of G’s unlabeled vertices so
that, for each v ∈ V that is labeled with some integer k = val(v), exactly k of v’s neighbors
have been assigned a mine.

(a) Show that the following labeled graph is a positive instance of MineSweep. Do so by
placing an “x” in each node that should have a mine. (5 pts)
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Solution.

x 3 x 2 x

2 x 4 x

x 3 x 2 x

(b) For a given instance (G = (V,E), val) of MineSweep, describe a certificate in relation to
(G = (V,E), val). (5 pts)

Solution. We seek a map mine : V → {0, 1}, where mine(v) = 1 iff a mine is placed at
vertex v ∈ V .

(c) Provide a semi-formal verifier algorithm that takes as input i) an instance (G = (V,E), val)
of MineSweep, and ii) a certificate for (G = (V,E), val) as defined in part a, and decides
if the certificate is valid for (G = (V,E), val). (10 pts)

Solution.

For each v ∈ V ,

//Mines should not be placed on labeled nodes

If val(v) > 0 ∧mine(v) = 1, then return 0.

For each v ∈ V ,

If val(v) = 0, then continue.

count = 0.

For each u ∈ V ,

If (u, v) ∈ E ∧mine(u) = 1, then count = count + 1.

If count ̸= val(v), then return 0.

Return 1.

(d) Describe the running time of your verifier from part c using size parameters m = |E| and
n = |V | and explain why it is a polynomial with respect to the size paramters.

Solution.

The verifier requires O(n2) steps due to the nested for-loops used the ensure that the value
of each vertex corresponds with the number of its neighbors that have mines. Checking
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if a pair of vertices forms an edge can be done in constant time with the help of a hash
table that requires O(m) = O(n2) steps to construct. Therefore, total number of steps is
O(n2) which is a quadratic polynomial in n. (5 pts)

3. Recall the mapping reduction f(C) = (S, t), where f maps an instance of 3SAT to an instance
of the Subset decision problem. Given 3SAT instance

C = {(x1, x2, x3), (x2, x3, x4), (x1, x2, x4), (x1, x3, x4)}

answer the following questions about f(C). Hint: to answer these questions you are not required
to draw the table, but you might find it helpful. Note: scoring 18 or more points on this problem
counts for passing LO3.

(a) What is the value of t? (5 pts)

Solution. t = 11113333 since C has m = n = 4 clauses and variables.

(b) How many numbers (counting repeats) are in S? What is the largest (in terms of numerical
value) number in S? (10 pts)

Solution. In general, there are 2n+2m numbers (the y’s and z’s and g’s and h’s) . Hence
|S| = 8 + 8 = 16. Largest number is y1 = 10001010.

(c) Determine a satisfying assignment for C and use it to identify a subset A of S that sums
to t. List all the members of A. Hint: there are multiple possible answers, but the subset
you choose must correspond with your chosen satisfying assignment. (10 pts)

Solution. We have α = (x1 = 1, x2 = 1, x3 = 0, x4 = 1) satisfies C. Therefore,

A = {y1, y2, z3, y4, g1, h1, g2, h2, g4, h4}

sums to t.

4. Answer the following questions. Correctly answering at least two of the three is sufficient for
passing LO4.

(a) Provide the definition of what it means for a decision problem to be NP-complete. (6 pts)

Solution. See lecture notes.

(b) One of the exercises from the complexity lecture establishes a polynomial-time mapping
reduction from Independent Set to Vertex Cover, i.e. IS ≤p

m VC. Using this reduction
as the final link in the chain, provide the chain of polynomial-time mapping reductions
that establishes the NP-completeness of VC, where each of the remaining reductions was
provided in either the Mapping Reducibility or Complexity lecture. (7 pts)

Solution. SAT to 3SAT, 3SAT to Clique, Clique to Independent Set, Independent Set

to Vertex Cover

(c) Each of the following decision problems described below takes as input a Boolean formula
F . Classify each one as either being in P, NP, or co-NP. (4 pts each)

i. F has at least two distinct satisfying assignments α1 and α2.
Solution. NP. certificate: a pair of assignments α1 and α2

ii. F is a fallacy meaning that it evaluates to 0 on every assignment α.
Solution. co-NP (same as UNSAT)
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iii. An instance of this problem has a second input k > 0 and the problem is to decide if
F ’s Tseytin encoding (from SAT to 3SAT) has at least k 3-SAT clauses.
Solution. P, since performing the Tseytin encoding takes polynomial time.

5. An instance C of the ̸=-SAT decision problem is the same as that of 3SAT, except now we seek a
satisfying assignment α which is a ̸=-assignment, meaning that, for each clause c ∈ C, there
must be a literal l1 ∈ c for which α(l1) = 1 and a literal l2 ∈ c for which α(l2) = 0. Solve the
following.

(a) Find a ̸=-assignment α that satisfies each of the following clauses.

C = {(x2, x3, x4), (x1, x2, x3), (x1, x3, x4), (x1, x2, x4), (x2, x3, x4)}.

(5 pts)

Solution. α = (x1 = 1, x2 = 1, x3 = 0, x4 = 1) is a ̸=-assignment (verify!).

(b) Given assignment α, α is called the complement of α, where, for any literal l that is
assigned by α,

α(l) = 1− α(l),

meaning that α assigns each literal the complement value of what α assigns it. For the
assignment α you provided in part a, verify that α is also a ̸=-assignment for the set of
clauses in C. In general, explain why the following statement is always true: “if α is a
̸=-assignment for a set of clauses, then so is α”. (5 points)

Solution. α = (x1 = 0, x2 = 0, x3 = 1, x4 = 0) is also a ̸=-assignment (verify!). In
general, if α is a ̸=-assignment and c = (l1, l2, l3) is one of the clauses, then, if, say, α sets
l1 = 1 and l2 = 0, then α sets l1 = 0 and l2 = 1 and so α is also a ̸=-assignment with
respect to c.

(c) Now consider the following mapping reduction from 3SAT to ̸=-SAT. Each clause c ∈ C,
where c = (l1, l2, l3), is mapped to the two clauses

f(c) = (l1, l2, zc), (zc, l3, g),

where zc is a new Boolean variable that is specific to c, and g is a global Boolean variable
that appears in the mapping of each c. Now suppose C is a negative instance of 3SAT. We
want to show that the above mapping can never result in a positive instance of ̸=-SAT. To
this end, let α be an assignment over the variables of C and suppose α does not satisfy
c = (l1, l2, l3). How must zc and g be assigned in order to make a ̸=-assignment for f(c)?
Explain. (5 pts)

Solution. We must have zc = 1 and g = 1, since all other literals are assigned 0, and so
both clauses need to have at least one literal assigned 1.

(d) Let β be the extension of α defined in the previous part. In other words, β assigns the
variables in C in the same way as α, but it also assigns all the local z variables and the
global g variable. Furthermore, suppose β is a ̸=-assignment for f(C). Then by part b, it
must also be true that β is also a ̸=-assignment for f(C) and that it assigns the variables
of C in the same manner as α. Moreover, since C is unsatisfiable, there must be a clause
c′ = (l′1, l

′
2, l

′
3) that is unsatisfied by α. Explain why this implies that β cannot form a

̸=-assignment for the two clauses in f(c′), thus creating a contradiction. (10 pts)
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Solution. Since each literal of c′ is assigned 0 by β, as was the case in part c, in order for
β to be a ̸=-assignment, zc′ and g must both be assigned 1. But, β(g) = 1 by part c, and
so β(g) = 0 and so each literal of the clause (zc′ , l

′
3, g) is assigned 0, which means β is not

a ̸=-assignment which contradicts the result from part b.

6. Recall that the 3-Dimensional Matching (3DM) decision problem takes as input three sets A,
B, and C, each having size n, along with a set S of triples of the form (a, b, c) where a ∈ A,
b ∈ B, and c ∈ C. We assume that |S| = m ≥ n. The problem is to decide if there exists a
subset of n triples (called a matching) from S for which each member from A∪B∪C belongs
to exactly one of the triples.

(a) Describe a valid mapping reduction f from 3DM to MineSweep (See Problem 2 of this
exam). Your description must be as general as possible so that it can be applied to any
3DM instance. Also, you must argue that (A,B,C, S) is positive iff f(A,B,C, S) is positive.
Hint: make the instance f(A,B,C, S) of MineSweep a bipartite graph with labels on one
side. Clearly define the vertices, any labels on the vertices, and a rule for when two vertices
are adjacent. (15 pts)

Solution. f(A,B,C, S) = G is a graph G whose vertices are A ∪ B ∪ C ∪ S. Moreover
for u ∈ A∪B ∪C and v ∈ S, (u, v) is an edge of G iff u appears in triple v. For example,
since b appears in (b, 2, y), there is an edge between these two vertices. Finally, we label
all the vertices in A ∪ B ∪ C with the number 1, meaning that exactly one edge incident
with u ∈ A ∪B ∪ C must have a mine.

Now suppose (A,B,C, S) is a positive instance of 3DM and letM ⊆ S be a 3DMmatching.
Then by placing mines on each vertex v ∈ M , we see that, since M is a 3DM matching,
every u ∈ A ∪ B ∪ C will be adjacent to exactly one vertex having a mine, which implies
G is a positive instance of MineSweep.

Conversely, if f(A,B,C, S) = G is a positive instance of MineSweep, then since there are
3n members of A∪B∪C, there must be n vertices of G which are members of S and that
have mines placed on them. Call this set of vertices M . Moreover, for every u ∈ A∪B∪C
there must be exactly one triple in M for which u appears in that triple. In other words,
M must be a 3DM matching for (A,B,C, S), and so (A,B,C, S) is a positive instance of
3DM.

(b) Demonstrate the reduction from part a using the 3DM instance (A,B,C, S), where A =
{a, b, c}, B = {1, 2, 3}, C = {x, y, z}, and

S = {(b, 2, y), (b, 1, z), (a, 3, z), (c, 2, y), (a, 2, y), (a, 3, y), (c, 3, x), (c, 1, z), (b, 1, x)}.

(10 pts)

Solution.

Below is a drawing of the graph G = f(A,B,C, S), where A = {a, b, c}, B = {1, 2, 3},
C = {x, y, z}, and

S = {(b, 2, y), (b, 1, z), (a, 3, z), (c, 2, y), (a, 2, y), (a, 3, y), (c, 3, x), (c, 1, z), (b, 1, x)}.

Since M = {(a, 3, z), (b, 1, x), (c, 2, y)} is a 3DM matching for (A,B,C, S), we see that
(A,B,C, S) is a positive instance of 3DM, and that placing mines at these vertices
establishes that G is a positive instance of MineSweep.
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a b c 1 2 3 x y z

b2y b1z a3z c2y a2y a3y c3x c1z b1x
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