## CECS 329, LO9 Assessment, April 18th, Spring 2024, Dr. Ebert

## **Problems**

LO5. Solve the following.

- (a) Provide the instructions of a URM program that computes the predicate function f(x,y) = (x > y). For example, f(5,3) = 1, while f(3,3) = f(4,7) = 0.
- (b) Describe the role each register plays in computing f(x,y).

LO6. Solve the following problems.

(a) Provide the URM program P whose Gödel number equals

$$2^{26} + 2^{48} + 2^{96} + 2^{113} - 1$$
.

Show all work.

(b) A universal program  $P_U$  is simulating a program that has 286 instructions and whose Gödel number is

$$x = 2^3 + 2^{179} + 2^{192} + 2^{192} + 2^{215} + 2^{223} + 2^{275} + \dots + 2^{c_{286}} - 1.$$

If the current configuration of the computation of  $P_x$  on some input has encoding

$$\sigma = 2^2 + 2^6 + 2^8 + 2^{15} + 2^{19} - 1,$$

then provide the next configuration of the computation and its encoding.

LO7. Answer the following.

- (a) Describe what it means to be a positive instance of the Self Accept decision problem.
- (b) In applying the diagonalization method towards proving the undecidability of Self Accept, we defined a computable function g(x) in terms of f(x), where f(x) is the decision function for Self Accept, which we assume to be total computable. Provide the formula for computing g(x) and describe what needs to be established about g(x) in order for the diagonalization method to be successful.
- (c) Suppose URM program  $P_{1269}$  computes  $\phi_{1269}(x)$  and that

$$\phi_{1269}(x) = x \mod 2.$$

What is the value of g(1269) and how does this prove that  $g \neq \phi(1269)$ ? Defend your answer

LO8. An instance of the decision problem Thousand-Plus Range is a Gödel number x, and the problem is to decide if function  $\phi_x$  has a non-empty range and whose range members have a value of at least 1000. Consider the function

1

$$g(x) = \begin{cases} 1 & \text{if } \phi_x \text{ has a thousand-plus range} \\ 0 & \text{otherwise} \end{cases}$$

- (a) Evaluate g(x) for each of the following Gödel number's x. Note: 2 out of 3 correct is considered passing. **Justify your answers**.
  - i.  $x = e_1$ , where  $e_1$  is the Gödel number of the program that computes the function  $\phi_{e_1}(y) = 4000y^2 + 300y$ .
  - ii.  $x = e_2$ , where  $e_2$  is the Gödel number of the program that computes the function  $\phi_{e_2}(y) = 1459$ .
  - iii.  $x = e_3$ , where  $e_3$  is the Gödel number of the program that computes the function  $\phi_{e_3}(y) = 2^{2^{4(y+1)}}$ .
- (b) Prove that g(x) is not URM computable. In other words, there is no URM program that, on input x, always halts and either outputs 1 or 0, depending on whether or not  $\phi_x$  has a thousand-plus range. Do this by writing a program P that uses g and makes use of the self programming construct. Then use a proof by cases to show that P creates a contradiction.

## LO9. Solve the following.

- (a) Provide the state diagram for a DFA M that accepts all binary words having an even number of 0's and does not contain the subword 101. Hint: make sure that, for each state of M, you are able to describe the current status of both properties in relation to being in that state.
- (b) Show the computation of M on inputs i)  $w_1 = 1100100$  and ii)  $w_2 = 0110100$ .