CECS 329, LO Assessment 7, March 21st, Spring 2024, Dr. Ebert

Problems

LO3. Solve the following.
(a) Suppose the graph G shown below is an instance of the Hamilton Cycle decision problem. Draw $f(G)$, where f is the mapping reduction from HC to the Traveling Salesperson decision problem. Hint: remember the k value!

(b) Verify that the mapping is valid by verifying that G and $f(G)$ are either both positive or both negative instances. Defend your answer.

LO4. Answer the following. Note: correctly answering two of the three constitutes a pass.
(a) Write either P, NP, or co-NP next to each of the following decision problems in terms of which one best characterizes the complexity of the problem. Note: there is only one best answer for each. Two points each.
i. An instance of the Vertex Cover decision problem is a pair (G, k), where $G=(V, E)$ is a simple graph, $k \geq 0$ is an integer, and the problem is to decide if G has a vertex cover of size k, i.e. a set $C \subseteq V$ for which every edge $e \in E$ is incident with at least one vertex in C.
ii. An instance of Substring is a pair $\left(s_{1}, s_{2}\right)$ of binary strings and the problem is to decide if s_{1} occurs as a substring of s_{2}. For example $(10101,001010111)$ is a positive instance of Substring since 10101 is a substring of 001010111.
iii. An instance of Bounded Independent Set is a graph $G=(V, E)$ and an integer $k \geq 0$ and the problem is to decide if the maximum independent set in G is of a size that does not exceed k.
(b) Describe the three main steps that must be completed in order to establish that a decision problem L is a member of NP. Clearly define all technical terms. Hint: your three steps should make reference to two different technical terms that need defining.
(c) Provide the chain of polynomial-time mapping reductions provided in lecture that establishes the NP-completeness of TSP. Hint:

$$
\text { Undirected Hamilton Path (HP) } \leq_{m}^{p} \text { Hamilton Cycle (HC) }
$$

is one of the reductions.

LO5. Solve the following.
(a) Provide the instructions of a URM program that computes the function $f(x)=2^{x}$.
(b) Describe the role each register plays in computing $f(x)$.

LO6. Solve the following problems.
(a) Provide the URM program P whose Gödel number equals

$$
2^{55}+2^{73}+2^{114}+2^{133}-1
$$

Show all work.
(b) A universal program P_{U} is simulating a program that has 286 instructions and whose Gödel number is

$$
x=2^{3}+2^{179}+2^{191}+2^{215}+2^{223}+2^{275}+\cdots+2^{c_{286}}-1 .
$$

If the current configuration of the computation of P_{x} on some input has encoding

$$
\sigma=2^{3}+2^{7}+2^{13}+2^{16}-1,
$$

then provide the next configuration of the computation and its encoding.
LO7. Answer the following. Note: correctly answering two of the three constitutes a pass.
(a) Describe what it means to be a positive instance of the Total decision problem.
(b) In applying the diagonalization method towards proving the undecidability of Total, we defined a computable function $g(x)$ in terms of $f(x)$, the decision function for Total, which we assume to be total computable. Provide the formula for computing $g(x)$ and describe what needs to be established about $g(x)$ in order for the diagonalization method to be successful.
(c) Suppose URM program P_{51} computes $\phi_{51}(x)$ and that

$$
\phi_{51}(x)= \begin{cases}\lfloor x / 2\rfloor & \text { if } x \text { is even } \\ \uparrow & \text { otherwise }\end{cases}
$$

What is the value of $g(51)$? Defend your answer.

