CECS 329, Learning Outcome Assessment 6, March 14th, Spring 2024, Dr. Ebert

Problems

LO2. An instance of the Max Cut decision problem is a simple graph $G=(V, E)$ and an integer $k \geq 0$. The problem is to decide if there is a way to color the vertices of G using the colors red and blue and results in there being at least k edges $e=(u, v)$ for which u and v are assigned different colors.
(a) For a given instance (G, k) of Max Cut, describe a certificate in relation to (G, k). Solution. R is a subset of vertices to color red.
(b) Provide a semi-formal verifier algorithm that takes as input i) an instance (G, k) of Max Cut, ii) a certificate for (G, k) as defined in part a, and decides if the certificate is valid for (G, k).

$$
\begin{aligned}
& \text { Count = } \\
& \text { For each } e=(x, y) \in E \\
& \quad \text { If }(u \in R \oplus \cup \in R)=1 \text {, then count t+. } \\
& \text { Return (count } \geq K) \text {. }
\end{aligned}
$$

Solution.
(c) Provide size parameters that may be used to measure the size of an instance (G, k) of Max Cut.
Solution.

$$
m=|E| \quad n=|V|
$$

(d) Use the size parameters from part c to describe the running time of your verifier from part b. Defend your answer in relation to the algorithm you provided for the verifier.

The verifier runs in $O(m)$ steps so long as we store the edges in a table, which wall requite $O(m)^{1}$ steps to create.

LO3. An instance \mathcal{C} of 3SAT consists of clauses $c_{1}=\left(x_{1}, \bar{x}_{2}, x_{3}\right), c_{2}=\left(\bar{x}_{2}, x_{3}, x_{4}\right), c_{3}=\left(\bar{x}_{1}, x_{2}, \bar{x}_{4}\right)$, and $c_{4}=\left(\bar{x}_{1}, \bar{x}_{3}, x_{4}\right)$. Answer the following questions about the mapping reduction $f(\mathcal{C})=(G, k)$ provided in lecture from 3SAT to Clique and applied to instance \mathcal{C}.
(a) How many vertices and edges does G have? Explain and show work. Hint: there are six different vertex-group pairs.
Solution. $3-4=12$ vertices

$$
3^{11}|e|
$$

$C_{1}-C_{2}$ edges: $9 \quad c_{1}-C_{3}$ edges: 9-2 $\quad C_{1}-C_{4}$ edges: $9-2$
$C_{2}-C_{3}$ edges: 9-2 $\quad C_{2}-C_{4}$ edges: 9-1 $C_{3}-C_{1}$ edges: 9-1
(b) What is the value of k ?

Solution.

$$
\begin{aligned}
& K=4 \text { since a clii re must include one vertex } \\
& \text { froneach of the } 4 \text { clause groups. }
\end{aligned}
$$

(c) Given that $\alpha=\left(x_{1}=x_{2}=0, x_{3}=1, x_{4}=0\right)$ satisfies \mathcal{C}, provide a clique set for G that certifies (G, k) is a positive instance of Clique. Hint: for each clique member, indicate the group from which it came.

Solution.

$$
\text { C ligan for } G:\left\{\bar{x}_{2}, \bar{x}_{2}, \bar{x}_{1}, \bar{x}_{1}\right\}
$$

All literals pairwise consistent $C_{1} \quad C_{2}$
LO4. Answer the following questions. Correctly answering and least two of the three is sufficient for G. passing
(a) Provide the definition of what it means for a decision problem to be NP-complete.

Solution. See Complexity lecture notes.
(b) Describe the three main steps that must be completed in order to establish that a decision problem L is a member of NP. Clearly define all technical terms.

Solution.

i. Define a certificate set for the problem instance which is a set of potential solutions for the instance.
ii. Provide a verifier program that takes two inputs, a certificate c and problem instance x, and decides if c is valid (i.e. a solution) for x.
iii. Prove that the verifier requires a polynomial number of steps in terms of the size of the problem instance.
(c) Each of the following graph decision problems described below takes as input a simple graph $G=(V, E)$ and a nonnegative integer $k \geq 0$. Classify each one as either being in P , NP, or co-NP.
i. Decide if G has fewer than k connected components.
ii. Decide if the size of every independent set of G is less than or equal to k.
iii. Decide if G has a vertex cover of size k.

Solution. i: P, ii. co-NP, iii. NP
LO5. Provide the instructions of a URM program that computes the function $f(x)=x^{2}$. For each register used, provide a few sentences describing how it is used.
Solution.
$1: J(1,2,9)$
2: J (1, 3, 6)

$$
x^{2}=\frac{x+x+x \cdots+x}{x-+i m e s}
$$

3:S(3) //Count up to x
4:S(4) //Count up to $x^{\wedge} 2$
5: J (1, 1, 2)
6:Z(3)
7:S(2) //Count the number of times R3 has counted up to x
8: J (1, 1, 1)
9:T(4,1)

LO6. Solve the following problems.
(a) Provide the URM program P whose Gödel number equals

$$
2^{22}+2^{35}+2^{65}+2^{133}-1
$$

Show all work.

$$
I_{1}=
$$

$$
B\left(I_{1}\right)=22 \text { and } 22 \bmod 4=2 \Rightarrow T(i, j) \text {, }
$$

Solution.

$$
\text { where } T(i-1, j-1)=\frac{20}{4}=5
$$

$$
5+1=6=2^{1}((2)(1)+1) \Rightarrow i=1+1=2 \quad \text { and } \quad j=1+1=2
$$

$$
\begin{aligned}
& \text { So, }\left(T(2,2)=I_{1}\right) \\
& B\left(I_{2}\right)=35-22-1=12 \text { and } 12 \mathrm{~mol} 4=0 \Rightarrow Z(i)=I_{2}
\end{aligned}
$$

where $i=4$. So, $I_{2}=Z(4)$.
$=65-35-1=29$ and 29 nad $y=1 \Rightarrow I_{3}=S(i)$

$$
\begin{aligned}
& \text { Where } j=8 . \quad \text { So }\left(I_{3}=S(8)\right. \\
& B(I 4)=133-65-1=67 \text { and } 67 \bmod 4=3 \Rightarrow J(i, j, k) \\
& \text { where } \varepsilon(i-1, j-1, k-1)=16 . \quad 16+1=17=20((2 l(8)+1) \Rightarrow \\
& j=1, j=1, k=9 .
\end{aligned}
$$

(b) A universal program P_{U} is simulating the computation of a program P_{x} on some input y, where P_{x} that has 136 instructions and whose Gödel number is

$$
x=2^{7}+2^{31}+2^{43}+2^{55}+2^{65}+2^{109}+\cdots+2^{c_{136}}-1
$$

If the current configuration of the computation has encoding

$$
\sigma=2^{5}+2^{10}+2^{18}+2^{24}-1
$$

then provide the next configuration of the computation and its encoding.

$$
C_{0}^{\text {Solution. }} \tau^{-1}(6)=\left(5,4,7,5_{\substack{n \\ P C}}\right.
$$

$$
\begin{aligned}
& B\left(I_{s}\right)=65-55-1=9 \Rightarrow I_{4}=s(3) . \\
& \text { Thus, } C_{\text {next }}=(5,4,8,6) \text { and } \\
& \tau\left(C_{\text {next }}\right)=2^{5}+2^{10}+2^{19}+2^{26}-1
\end{aligned}
$$

