CECS 329, LO11 Assessment, May 2nd 2024, Dr. Ebert

Problems

LO7. Answer the following.
(a) Describe what it means for natural number x to be a positive instance of the Total decision problem.
(b) In applying the diagonalization method towards proving the undecidability of Total, we defined a computable function $g(x)$ in terms of $f(x)$, where $f(x)$ is the decision function for Total, which we assume to be total computable. Provide the formula for computing $g(x)$ and describe what needs to be established about $g(x)$ in order for the diagonalization method to be successful.
(c) Suppose URM program P_{643} computes $\phi_{643}(x)$ and that

$$
\phi_{643}(x)= \begin{cases}0 & \text { if } x \leq 700 \\ \uparrow & \text { otherwise }\end{cases}
$$

Explain why we are sure that $g \neq \phi_{643}$.
LO8. An instance of the decision problem Infinite Range is a Gödel number x, and the problem is to decide if the function $\phi_{x}(y)$ has an infinite range. Consider the function

$$
g(x)= \begin{cases}1 & \text { if } \phi_{x}(y) \text { has an infinite range } \\ 0 & \text { otherwise }\end{cases}
$$

(a) Evaluate $g(x)$ for each of the following Gödel number's x. Note: 2 out of 3 correct is considered passing. Justify your answers.
i. $x=e_{1}$, where $\phi_{e_{1}}(y)=y^{2} \bmod 101$.
ii. $x=e_{2}$, where e_{2} is the Gödel number of the program $P_{e_{2}}=S(1), S(1), J(1,2,1)$.
iii. $x=e_{3}$, where

$$
\phi_{e_{3}}(y)= \begin{cases}y^{3} & \text { if } y \leq 500 \\ \uparrow & \text { otherwise }\end{cases}
$$

(b) Prove that $g(x)$ is not URM computable. In other words, there is no URM program that, on input x, always halts and either outputs 1 or 0 , depending on whether or not $\phi_{x}(y)$ has an infinite range. Do this by writing a program P that uses g and makes use of the self programming construct. Then use a proof by cases to show that P creates a contradiction.

LO9. Solve the following.
(a) Provide the state diagram for a DFA M that accepts a binary word w iff w has an even number of 0's and exactly two 1's.
(b) Show the computation of M on inputs i) $w_{1}=001001$ and ii) $w_{2}=010101$.

LO10. Do the following for the NFA N whose state diagram is shown below.

(a) Provide a table that represents N 's δ transition function.
(b) Use the table from part a to convert N to an equivalent DFA M using the method of subset states. Draw M's state diagram.
(c) Show the computation of M on input $w=00011$. Is it rejecting or accepting?

LO11. Provide a regular expression E that represents the set of all words over the alphabet $\Sigma=\{a, b\}$, except for "bab" and "ab".

