
Undecidability and the Diagonalization Method

Last Updated March 12th, 2024

1 Introduction

In this lecture the term “computable function” refers to a function that is URM computable or,
equivalently, computable in the informal sense described by the Church-Turing thesis.

Recall that a predicate function is one whose codomain is {0, 1}. Moreover, associated with
every decision problem A is a predicate function d : A → {0, 1}, called the decision function (or
indicator function) for A and for which

dA(x) =

{
1 if x is a positive instance of A
0 if x is a negative instance of A

Finally, we say that A is decidable iff function dA is total computable. In other words, there is a
URM program PA that

1. halts on all inputs,

2. has a range equal to {0, 1}, and

3. for any input x, outputs 1 iff x is a positive instance of A.

On the other hand, if A’s decision function is not total URM computable, then A is said to be
undecidable.

In this lecture we assume that the instances of every decision problem are equal to the set N of
natural numbers.

1



Example 1.1. Consider the decision problem Prime whose instances are natural numbers and where
a positive instance is a prime number. Then Prime is decidable since one can write a URM program
that, on input n, outputs 1 iff n is prime, and 0 if n is 0, 1, or a composite number. Such a program
is often one of the first programs assigned in a beginning programming class.

2



1.1 Properties of programs and computable functions

Since every program P may be associated with a unique natural number x, called its Gödel number,
it allows us to readily define decision problems about programs.

Example 1.2. Consider decision problem Total where an instance of Total is a Gödel number x,
and the problem is to decide if program Px is total, meaning that it halts on all of its inputs.

One of the remarkable achievements of Computability theory is in showing that almost all program
decision problems are undecidable. In fact program decision problems were among the first to be
shown undecidable. Later, other mathematical problems were shown to be undecidable with the help
of the concepts of mapping reductions and Turing reductions. Indeed, the process of showing that
some decision problem B is undecidable is similar to that of showing a problem in NP is NP-complete:
namely, show that a known undecidable problem A is mapping reducible to B, i.e. A ≤m B. Of
course, this strategy requires that there be an initial undecidable problem that was proven as such
using some other proof technique. And this technique is called the “diagonalization method”, and is
the subject of the next section.

3



2 Some Preliminary Results

Definition 2.1. A nonempty set A is said to be

finite if it can be written as A = {a0, . . . , an−1}

countably infinite if it can be written as A = {a0, a1, a2, . . .}

countable iff it is either finite or countably infinite

uncountable if it is not countable.

Lemma 2.2. Let A be an infinite set and suppose there is a logically sound procedure that i) takes
as input a countably infinite subset B ⊆ A and ii) produces a member a ∈ A−B. Then A must be
uncountable.

Proof. Suppose A is countably infinite. Then setting B = A, the procedure produces a member of
a ∈ A− A = ∅ which is impossible. Therefore, A must be uncountable.

The proof of the following lemma is omitted because it should be obvious that no logically sound
procedure should be able to generate a member of a well-defined set A and yet have that member
be different from every member of A. Here, by “well-defined set A” we mean that there are no
ambiguities about what it means to be a member of A.

Lemma 2.3. Let A = {a0, a1, a2, . . .} be a well-defined countably infinite set and suppose there is a
procedure that produces an entity a that i) satisfies the requirements for membership in A, yet ii)
a ̸= ai, for all i ≥ 0. Then the procedure must be unsound, meaning that it is based on one or more
false assumptions.

4

Administrator
Pencil



3 The Diagonalization Method

Although the diagonalization method may be applied to a variety of different types of sets, in this
lecture we focus exclusively on sets of functions, where each function f : N → N is a partial unary
function from natural numbers to natural numbers. Within this context, given a countably-infinite
set A = {f0, f1, f2, . . .} of functions, the diagonalization method is a procedure whose goal is to
produce a function g for which g ̸= fi for every i ≥ 0. It accomplishes this by ensuring that

g(i) ̸= fi(i)

for every i ≥ 0.

Thinking of A as an infinite matrix, where row i, i ≥ 0, consists of the entries fi(0), fi(1), . . . , fi(2), . . .,
we may visualize the situation as follows.

index\input n 0 1 2 · · · i · · · Observation
f0(n) 2 ̸= g(0) 7 4 · · · 18 · · · g ̸= f0
f1(n) ↑ ↑≠ g(1) 7 · · · ↑ g ̸= f1
f2(n) 7 5 9 ̸= g(2) · · · 36 · · · g ̸= f2
...

...
...

...
. . .

...
...

...
fi(n) ↑ 1 ↑ · · · 1 ̸= g(i) · · · g ̸= fi
...

...
...

...
...

...
. . .

...

To summarize, the diagonalization method seeks to define a function g that is different from all the
functions in A. Once this has been established, we may then invoke one of the lemmas from the
previous section to prove something of interest.

5

Administrator
Pencil



4 Example: There exist functions that are not computable

Let CF denote the set of all URM-computable functions. One consequence of being able to list
all URM programs as P0, P1, P2, . . . is that we may also list all URM-computable functions, namely
ϕ0, ϕ1, ϕ2, . . .. Thus CF is countably infinite, meaning that we can place all computable functions
in an infinite list.

On the other hand, the following theorem tells us that the set of all functions f : N → N is
uncountable.

Theorem 4.1. The set F of all functions from natural numbers to natural numbers is uncountable.

Proof. We use Lemma 2.2 along with the diagonalization method.

1. Let B = {f0, f1, f2, . . .} be any countably infinite subset of F .

2. Define the function g : N → N by

g(i) =

{
0 if fi(i) is undefined
fi(i) + 1 otherwise

for all i ≥ 0.

3. Then, for all i ≥ 0, g ̸= fi since g and f have different outputs for input i.

4. Therefore, by Lemma 2.2, F is uncountable.

Again, we may use the table below to visulaize how the diagonalization method was used in the
proof.

index\input n 0 1 2 · · · i · · · Observation
f0(n) 2 → 3 7 4 · · · 18 · · · g(0) = 3 ̸= f0(0) = 2
f1(n) ↑ ↑→ 0 7 · · · ↑ · · · g(1) = 0 ̸= f1(1) =↑
f2(n) 7 5 9 → 10 · · · 36 · · · g(2) = 10 ̸= f2(2) = 9
...

...
...

...
. . .

...
...

...
fi(n) ↑ 1 ↑ · · · 1 → 2 · · · g(i) = 2 ̸= fi(i) = 1
...

...
...

...
...

...
. . .

...

6

Administrator
Pencil



Corollary 4.2. Let NCF denote the set of all non-computable functions from natural numbers to
natural numbers. Then NCF is uncountable.

Proof. Since the union of two countable sets is also countable (exercise!), if NCF were countable,
then it would imply

F = CF ∪ NCF

is also countable which contradicts Theorem 4.1.

7

Administrator
Pencil



5 The Self Acceptance Property is Undecidable

Program P is said to have the self acceptance property iff Px(x) is defined, where x is the Gödel
number of P . A more succinct way of describing this property is that Px has the self acceptance
property iff x ∈ Wx. Stated as a decision problem, x is a positive instance of Self Accept iff ϕx(x)
is defined. We now use Lemma 2.3 to prove that the self acceptance property is undecidable.

Theorem 5.1. Self Accept is undecidable.

Proof.

1. Assume that Self Accept is decidable and arrive at a contradiction.

2. In other words, assume that

f(x) =

{
1 if x ∈ Wx

0 otherwise

is total computable.

3. By the Church-Turing thesis, the function

g(x) =

{
1 if f(x) = 0
undefined otherwise

is computable, i.e. g ∈ CF .

4. Now show that g ̸= ϕi for every i ≥ 0. Do this by showing that g(i) ̸= ϕi(i).

Case 1: ϕi(i) =↑. Then f(i) = 0 which means g(i) = 1. Thus, g(i) ̸= ϕi(i).

Case 2: ϕi(i) =↓. Then f(i) = 1 which means g(i) =↑. Thus, g(i) ̸= ϕi(i).

5. Thus, g ∈ CF but g ̸= ϕi for all i ∈ N .

6. Then by Lemma 2.3, a false assumption was made when defining g.

7. Therefore, f(x) is not total computable, i.e. Self Accept is undecidable.

8

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil



The following table suggests that the above proof can be understood as another diagonalization
argument. The red values in the table are the outputs being assigned to g and showing that g(i) is
different from each ϕi(i).

function\input i 0 1 2 · · · i · · · self accepting?
ϕ0 2 →↑ 7 4 · · · 18 · · · yes
ϕ1 ↑ ↑→ 1 7 · · · ↑ · · · no
ϕ2 7 5 9 →↑ · · · 36 · · · yes
...

...
...

...
. . .

...
...

...
ϕi ↑ 1 ↑ · · · 1 →↑ · · · yes
...

...
...

...
...

...
. . .

...

9

Administrator
Pencil



6 The Total decision problem is undecidable

We now use the diagonalization method to prove that given a URM program P , there is no algorithm
for deciding whether or not P computes a total function.

Theorem 6.1. The Total decision problem in undecidable. In other words, the function

f(x) =

{
1 if ϕx is total
0 otherwise

is not total computable.

Proof.

1. Assume that Total is decidable and arrive at a contradiction.

2. In other words, assume that f(x) defined above is total computable.

3. Then by the Church-Turing thesis

g(x) =

{
ϕx(x) + 1 if f(x) = 1
0 if f(x) = 0

is a total computable function.

4. Now show that g ̸= ϕi for every i ≥ 0.

Case 1: ϕi is a total function. Then f(i) = 1 and so g(i) = ϕi(i) + 1 ̸= ϕi(i).

Case 2: ϕi is not a total function. Then g ̸= ϕi since g is a total function.

5. Thus, g ∈ CF but g ̸= ϕi for all i ∈ N .

6. Then by Lemma 2.3, a false assumption was made when defining g.

7. Therefore, f(x) is not total computable, i.e. Total is undecidable.

10

Administrator
Pencil

Administrator
Pencil



The following table suggests that the above proof can be understood as another diagonalization
argument. The red values in the table are the outputs being assigned to g and showing that g(i) is
one more than ϕi(i) whenever ϕi is total.

function\input i 0 1 2 · · · i · · · total?
ϕ0 2 → 3 7 4 · · · 18 · · · yes
ϕ1 ↑ 2 → 0 7 · · · ↑ · · · no
ϕ2 7 5 9 → 10 · · · 36 · · · yes
...

...
...

...
. . .

...
...

...
ϕi 3 0 10 · · · 95 → 96 · · · yes
...

...
...

...
...

...
. . .

...

11



7 Limitations of the Diagonalization Method

It turns out that the previous examples that made use the diagonalization method are in fact the rare
exceptions, meaning that the diagonalization method does not seem to work as a proof technique for
proving the undecidability of most other programming properties.

Example 7.1. An instance of the Zero decision problem is a Gödel number x and the problem is to
decide if Px outputs 0 on every input. Let dZero(x) be the decision function for Zero and consider
the following function g(x) which attempts to diagonalize against all computable functions in an
attempt to prove that dZero(x) is not total computable.

g(x) =

{
1 if dZero(x) = 1
0 otherwise

Has g(x) succeeded? In other words, based on g’s definition, may we conclude that g is different
from each ϕi? Explain.

Solution.

12

Administrator
Pencil

Administrator
Pencil



8 Using Turing Reducibility to Prove Undecidability

Recall the following definition of Turing Reducibility.

Definition 8.1. Problem A is Turing reducible to problem B, denoted A ≤T B, iff there is some
algorithm that can solve any instance x of A, and is allowed to make zero or more queries to a
B-oracle, i.e. an oracle that provides solutions to instances of B.

Theorem 8.2. If A is undecidable and A ≤T B, then B is also undecidable.

Proof. Suppose B were decidable and thus has total computable characteristic function fB(x) that
is computed by some URM program P . Let Q be the oracle program that decides A with the help of
a B-oracle. Now consider the following description of an algorithm for computing A’s chracteristic
function fA(x).

1. Input x.

2. Simulate Q on input x.

(a) Whenever Q makes a query queryB(y) to the B-oracle, answer the query by simulating P
on input y and answering the query with fB(y).

3. Return Q(x). //i.e. output fA(x)

By the Church-Turing thesis, the above program can be implemented with a URM program. Thus,
fA(x) is total computable which means A is decidable, a contradiction. Therefore, problem B must
be undecidable.

13

Administrator
Pencil



Example 8.3. Let Zero be the decision problem which, on input x determines whether or not URM
program Px is total and always outputs the value 0. Prove that Zero is undecidable by showing that
Total ≤T Zero.

14

Administrator
Pencil



9 LO6 Review Problems

1. Compute the Gödel number for program P = T (3, 2), J(1, 2, 3), Z(3), S(6). Write your answer
as a sum of powers of two minus 1 (see part b).

Solution.

2. Provide the instructions of the program whose Gödel number is

24 + 214 + 2301 + 2381 − 1.

Solution.

15



Example 9.1. A universal program PU is simulating a program that has 123 instructions and whose
Gödel number is

x = 27 + 222 + 227 + 239 + 251 + 263 + · · ·+ 2c123 − 1.

If the current configuration of the computation of Px on some input has encoding

σ = 22 + 28 + 213 + 216 − 1,

then provide the next configuration of the computation and its encoding.

Solution.

16


