
CECS 528, Exam 2 Version b Solutions, March 24th, Spring 2023, Dr.
Ebert

Rules for Completing the Problems

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMU-
NICATION allowed when solving these problems. Make sure all these items are put
away BEFORE looking at the problems. FAILURE TO ABIDE BY THESE RULES
MAY RESULT IN A FINAL COURSE GRADE OF F.

Directions

Choose up to six problems to solve. Clearly mark each problem you want graded by placing an ‘X’
or check mark in the appropriate box. If you don’t mark any problems or mark more than
six, then we will record grades for the six attempted problems that received the fewest
points.

Problem 1 2 3 4 5 6 LO1 LO2 LO3 LO4

Grade?

Result

Your Full Name:

Class ID Number:

1



1. Note: correctly solving part a of this problem counts for passing LO5.

a. Demonstrate the partitioning step of Hoare’s version of Quicksort for the array

a = 11, 6, 3, 10, 9, 5, 2, 8, 1, 7, 4,

where we assume that the pivot equals the median of the first, last, and middle integers
of a. Provide arrays aleft and aright. (10 pts)

Solution.

We have M = median(11, 5, 4) = 5, aleft = 1, 2, 3, 4, and aright = 10, 6, 8, 11, 7, 9.

b. What is the worst-case running time of Hoare’s algorithm in the case that the members
of the input array a form a strictly decreasing sequence of integers. Defend your answer.
Again, we assume that the pivot equals the median of the first, last, and middle integers
of a. (15 pts)

Solution. WLOG, assume that the array is a = n, n − 1, . . . , 1 for some odd n. Verify
that the first round of the partitioning step results in

aleft = 2, 3, . . . , (n + 1)/2− 1, 1

and
aleft = (n + 1)/2 + 2, (n + 1)/2 + 3, . . . n, (n + 1)/2 + 1

Thus, both arrays are of the form a = m,m + 1,m + 2, . . . ,m + n − 2,m − 1 for some
integer m and n ≥ 3. Verify that, when the partitioning step is applied to such an array
that i) the worst possible split of (1, n−2) occurs, and ii) the right array having size n−2
has the same form as a (increasing until reaching the final member whose value is less
than the value of all other members). Therefore, the worst-case running time is

n + n− 2 + n− 4 + · · ·+ O(1) = Θ(n2).

2



2. Given that r = ae + bg, s = af + bh, t = ce + dg, and u = cf + dh are the four entries of AB,
and Strassen’s products are obtained from matrices

A1 = a,B1 = f − h,A2 = a + b, B2 = h,A3 = c + d,B3 = e, A4 = d,B4 = g − e,

A5 = a + d,B5 = e + h,A6 = b− d,B6 = g + h,A7 = a− c, B7 = e + f,

Compute P1, . . . , P7 and use them to compute r, s, t, and u. Note: correctly solving this problem
counts for passing LO6. (25 pts)

Solution. See the Divide and Conquer lecture notes.

3



3. Answer the following. Note: correctly solving this problem counts for passing LO7.

a. Provide the dynamic-programming recurrence that is used in the Floyd-Warshall algo-
rithm. (10 pts)

Solution. See Dynamic Programming lecture notes.

b. When executing the Floyd-Warshall algorithm, assume

d4 =


0 1 8 1 4 7
18 0 3 19 6 14
16 4 0 6 5 1
15 10 19 0 6 17
4 1 1 3 0 1
4 6 1 3 5 0


has been computed. Use this matrix to compute d5. Then use d5 to compute d6. (15 pts)

Solution.

d5 =


0 1 5 1 4 5
10 0 3 9 6 7
9 4 0 6 5 1
10 7 7 0 6 7
4 1 1 3 0 1
4 6 1 3 5 0



d6 =


0 1 5 1 4 5
10 0 3 9 6 7
5 4 0 4 5 1
10 7 7 0 6 7
4 1 1 3 0 1
4 6 1 3 5 0



4



4. Given an array of n integers, a local maximum for a is a value of a occurring at some index
i, 0 < i < n− 1, for which a[i] > a[i− 1] and a[i] > a[i+ 1]. Describe an optimal (with respect
to big-O running-time) algorithm for determining whether or not a has a local maximum.
Please do not use pseudocode. Rather, number each step of your algorithm and clearly explain
each step. Before beginning the first step clearly define all variables used by the algorithm
and indicate their initial values. Provide the running time of your algorithm and justify your
answer. Suboptimal and/or poorly written algorithms will be awarded 0 points. (25 pts)

Solution. Local Max Sufficient Condition (LMSC): as was given, we may assume that a[0] <
a[1] and a[n− 2] > a[n− 1] (why does this guarantee the existence of a local maximum?).

a. Initialize variables l = 0 and u = n− 1.

b. If a has a size of of 2 or less, return false.

c. If a has a size of of 3, then return true iff a[l + 1] > a[l] and a[l + 1] > a[r].

d. Set variable m = (l + u)/2, and consider a[m].

e. If a[m] > a[m− 1] and a[m] > a[m + 1], then return true.

f. Then we must have either a[m− 1] > a[m] or a[m] < a[m + 1]. If a[m− 1] > a[m]. Then
the LMSC holds for the subarray a[l : m]. Similarly, if a[m] < a[m + 1], Then the LMSC
holds for the subarray a[m : r]. In both cases, goto Step 2.

Running time is T (n) = O(log n) since T (n) satisfies T (n) ≤ T (n/2) + 1.

5



5. An instance of the k Nearest Neighbor problem is a point ~y ∈ Rn and points ~x1, . . . , ~xn ∈ Rn,
and the problem is to determine the k > 0 points in ~x1, . . . , ~xn that are nearest to ~y in terms of
Euclidean distance d(~y, ~xi), where 0 < k ≤ n. Describe an O(n) algorithm for determining ~y’s k
nearest neighbors. Please do not use pseudocode. Rather, number each step of your algorithm
and clearly explain each step. Before beginning the first step clearly define all variables used
by the algorithm and indicate their initial values. Provide the running time of your algorithm
and justify your answer. Suboptimal and/or incompletely/vaguely described algorithms will be
awarded 0 points. Hint: O(kn) grows faster than O(n). (25 pts)

Solution.

a. Create the array of real numbers D = d(~y, ~x1), . . . , d(~y, ~xn), and use a hash table that
associates each value d(~y, ~xi) with the point ~xi that produced the distance.

b. We may assume the find statistic algorithm allows for real-valued arrays. Apply the
find statistic algorithm (see Divide and Conquer lecture notes) to inputs D, k − 1,
lower = 0, and upper = n− 1.

c. Due to the partitioning step the first k members of D will consist of the k least distances
from y. For each of these distances, use the hash table to obtain the associated point and
return all k points.

Running time = O(n) since Steps 1 and 2 require O(n) while Step 3 requires O(k) steps which,
since k ≤ n, equals O(n).

6



6. Consider the problem of counting the number of times a bit string u appears in a bit string v,
where we assume u’s bits do not have to appear consecutively. For example, if u = 011 and
v = 001011, then u appears seven times in v at the following index locations:

(135), (136), (156), (235), (236), (256), and (456).

Let N(i, j) denote the number of times u-prefix u1 · · ·ui appears in v-prefix v1 · · · vj.

a. Provide a dynamic-programming recurrence for N(i, j). Hint: an appearance of the u-
prefix in the v-prefix may or may not make use of bit j of the v-prefix. (15 pts)

b. Apply your recurrence to the problem instance u = 101 and v = 1101011. Provide the
matrix of subproblem solutions. (10 pts)

7



LO1. Suppose f(n) is a function that has sublinear growth. Prove that nf(n) does not have exponen-
tial growth.

LO2. For the weighted graph with edges

(a, c, 5), (b, c, 4), (c, e, 6), (c, f, 3), (c, d, 2), (d, f, 1),

Show how the forest of M-Trees changes when processing each edge in Kruskal’s sorted list of
edges. When unioning two trees, use the convention that the root of the union is the root which
has the lower alphabetical order. For example, if two trees, one with root a, the other with
root b, are to be unioned, then the unioned tree should have root a.

8



LO3. In the correctness proof of Prim’s algorithm, suppose T = e1, . . . , en−1 are the edges selected
by Prim’s algorithm (in that order) and Topt is an mst that uses edges e1, . . . , ek−1, but for
which ek 6∈ Topt. Explain how to identify an edge e ∈ Topt for which Topt + ek − e is an mst
that now possesses edges e1, . . . , ek. Hint: consider tree Tk−1 which is Prim’s tree after round
k − 1 and is contained in Topt.

LO4. Given T1(n) = 64T1(n/4) + n3, and T2(n) = aT2(n/3) + n2 what is the greatest possible value
that a can assume, and still have T2(n) = o(T1(n))? Show work and explain.

9


