
CECS 528, Exam 1 Solutions, February 17th, Spring 2023, Dr. Ebert

Rules for Completing the Problems

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMU-
NICATION allowed when solving these problems. Make sure all these items are put
away BEFORE looking at the problems. FAILURE TO ABIDE BY THESE RULES
MAY RESULT IN A FINAL COURSE GRADE OF F.

Directions

Choose up to six problems to solve. Clearly mark each problem you want graded by placing an X
or check mark in the appropriate box in the Grade(?) row of the table below. If you don’t mark
any problems for us to grade or mark 7 or more problems, then we will record grades
for the 6 that received the fewest points.

Problem 1 2 3 4 5 6 LO1

Grade?

Result

Your Full Name:

Your Class ID:

1



1. For each of the following sentences, replace the lowercase roman numerals with the appropriate
word or phrase. For the phrase “subject to the constraint”, provide any conditions that must
be met in order for the greedy choice to be valid. (6 points per algorithm)

a. The greedy choice made in Kruskal’s algorithm is to choose the (i) of least (ii) subject to
the constraint that (iii).

(i)

(ii)

(iii)

b. The greedy choice made in the Fractional Knapsack algorithm is to choose the (i) of
greatest (ii) subject to the constraint that (iii).

(i)

(ii)

(iii)

c. The greedy choice made in the Unit Task Scheduling algorithm is to choose the (i) of
greatest (ii) subject to the constraint that (iii).

(i)

(ii)

(iii)

d. The greedy choice made in the Task Selection algorithm is to choose the (i) of least (ii)
subject to the constraint that (iii).

(i)

(ii)

(iii)

Solution. See the appropriate exercise (Greedy Graph Algorithms and Introduction to
Greedy Algorithms lectures) for each of these algorithms.

2



2. Suppose we have established that logk n = o(nε), for some integer k > 0 and ε > 0. Use this
fact to prove that logk+1 n = o(nε). Note: correctly solvng this problem counts for passing
LO1. (25 points)

Solution. See the solution to Exercise 33 of the Big-O Notation lecture.

3



3. Use the substitution method to prove that, if T (n) satisfies

T (n) = 7T (n/4) + 2T (n/3) + n2,

Then T (n) = O(n2). Note: correctly solvng this problem counts for passing LO4. Hint:
remember to state the inductive assumption. (25 points)

Solution.

Inductive Assumption. Assume T (k) ≤ Ck2 for all k < n. Show T (n) ≤ Cn2.

Proof. We have, by the inductive assumption,

T (n) = 7T (n/4) + 2T (n/3) + n2 ≤ 7C(
n

4
)2 + 2C(

n

3
)2 + n2 = 7C(

n2

16
) + 2C(

n2

9
) + n2 =

95Cn2

144
+ n2 ≤ Cn2 ⇔ C ≥ 144

49
.

4



4. Suppose a function T (n) satisfies

T (n) = 64T (n/b) + n3,

for some integer b ≥ 2. Based on this information, provide the tightest possible asymptotic lower
and upper bounds for the growth of T (n). Defend your answers. Hint: for example, Ω(n2) is a
tighter lower bound than Ω(n) since the former places more restriction on the possible growth
of T (n). Note: correctly solvng this problem counts for passing LO4. (25 pts)

Solution. By Case 3 of the Master Theorem, we know that T (n) = Ω(f(n)) = Ω(n3). By
Case 2 of the Master Theorem, if b = 4, then T (n) = Θ(n3 log n). Finally, for b < 4, Case 1 of
the Master Theorem implies T (n) = Θ(nlogb 64) which is maximized when b = 2, in which case
we have T (n) = Θ(n6).

5



5. Answer the following with regards to a correctness-proof outline for Dijkstra’s algorithm. Note:
correctly solvng this problem counts for passing LO3.

a. Complete the following sentence. “In relation to Dijkstra’s algorithm, an i-neighboring
path from source s to a vertex v that is external to DDTi is . . .” (5 points)

Solution. a path from source s to v that uses exactly one edge not in DDTi.

b. Complete the following sentence. “Furthermore, the i-neighboring distance di(s, v)
from source s to v is defined as . . .” (5 points)

Solution. the minimum cost of any i-neighboring path from source s to v .

c. Complete the following sentence. “The greedy choice made by Dijkstra’s algorithm at
round i+ 1 is to select the external vertex v∗ which has . . .” (5 points)

Solution. the least di(s, v) value.

d. If P is any path from s to v∗ (from part c), explain why cost(P ) ≥ di(s, v
∗). Conclude

that d(s, v∗) = di(s, v
∗). (10 points)

Solution. Since P is a path that starts in DDTi and ends outside of DDTi, it must have
a subpath P ′ that is an i-neighboring path. Let u 6∈ DDTi be the last vertex of P ′. Then
it follows that

cost(P ) ≥ cost(P ′) ≥ di(s, u) ≥ di(s, v∗),

where the first inequality is true because P ′ is a subpath of P , the second one is true since
P ′ is an i-neighboring path from s to u, and di(s, u) is the least cost of any such path,
and the third one is true by part c) and the fact that v∗ was has the least i-neighboring
distance from s.

6



6. For use in the Unit Task Scheduling algorithm, the MNode data structure may be defined as
follows.

struct MNode

{

MNode parent; //a reference to this node’s parent

//assigned null in case this node is the root of its tree

int index; //the scheduling-array index associated with this node

};

Provide a recursive implementation of the function

MNode root(MNode node);

which returns a reference to the root of the tree where node is located, and has the side-effect
of performing path compression on the path from node to the root. Note: points will be lost if
your implementation does not use recursion. (25 pts)

Solution.

MNode root(MNode node)

{

n = node.parent;

if(n == null)

return node; //node is a root!

node.parent = root(n); //path compression

return node.parent;

}

7



LO2. For the weighted graph with edges

(a, c, 5), (b, c, 4), (c, e, 6), (c, f, 3), (c, d, 2), (d, f, 1),

Show how the MTree forest of disjoint set data structure changes when processing each edge
in Kruskal’s sorted list of edges. When unioning two trees, use the convention that the root of
the union is the root which has the lower alphabetical order. For example, if two trees, one
with root a, the other with root b, are to be unioned, then the unioned tree should have root
a. Your solution should include six snapshots, one for the processing of each edge. (0 pts)

8


