CECS 528, Learning Outcome Assessment 9b, April 14th, Spring 2023, Dr. Ebert

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION ALLOWED. Submit solutions to at most 2 LO problems on separate sheets of paper.

Problems

LO5. Consider Karatsuba's algorithm for multiplying two n-bit binary numbers x and y. Let x_{L} and x_{R} be the leftmost $\lceil n / 2\rceil$ and rightmost $\lfloor n / 2\rfloor$ bits of x respectively. Define y_{L} and y_{R} similarly. Let P_{1} be the result of calling multiply on inputs x_{L} and y_{L}, P_{2} be the result of calling multiply on inputs x_{R} and y_{R}, and P_{3} the result of calling multiply on inputs $x_{L}+x_{R}$ and $y_{L}+y_{R}$. Then return the value $P_{1} \times 2^{2\left\lfloor\frac{n}{2}\right\rfloor}+\left(P_{3}-P_{1}-P_{2}\right) \times 2^{\lfloor n / 2\rfloor}+P_{2}$. Demonstrate Karatsuba's algorithm on $x=93$ and $y=72$. Limit your demonstration to the root level of recursion. In other words, do not go deeper than level 0 .

LO6. Consider the following algorithm called Karatsuba's algorithm for multiplying two n-bit binary numbers x and y. Let x_{L} and x_{R} be the leftmost $\lceil n / 2\rceil$ and rightmost $\lfloor n / 2\rfloor$ bits of x respectively. Define y_{L} and y_{R} similarly. Let P_{1} be the result of calling multiply on inputs x_{L} and y_{L}, P_{2} be the result of calling multiply on inputs x_{R} and y_{R}, and P_{3} the result of calling multiply on inputs $x_{L}+x_{R}$ and $y_{L}+y_{R}$. Then return the value $P_{1} \times 2^{2\left\lfloor\frac{n}{2}\right\rfloor}+\left(P_{3}-\right.$ $\left.P_{1}-P_{2}\right) \times 2^{\lfloor n / 2\rfloor}+P_{2}$. Show that the algorithm always works by proving in general that $x y=P_{1} \times 2^{n}+\left(P_{3}-P_{1}-P_{2}\right) \times 2^{n / 2}+P_{2}$ for arbitrary x and y. Hint: to avoid floors and ceilings, you may assume that x and y both have even lengths.

LO7. Answer/Solve the following questions/problems.
(a) The dynamic-programming algorithm that solves the Optimal Binary Search Tree optimization problem defines a recurrence for the function $\operatorname{wac}(i, j)$. In words, what does wac (i, j) equal? Hint: do not write the recurrence (see Part b).
(b) Provide the dynamic-programming recurrence for $\operatorname{wac}(i, j)$.
(c) Apply the recurrence from Part b to the keys 1-5 having respective weights 40,20,45,20,50. Show the matrix of subproblem solutions and use it to provide an optimal parenthesization.

LO8. Solve the following problems.
(a) The dynamic-programming algorithm that solves the Longest Common Subsequence (LCS) optimization problem defines a recurrence for the function $\operatorname{lcs}(i, j)$. In words, what does $\operatorname{lcs}(i, j)$ equal? Hint: do not write the recurrence (see Part b).
(b) Provide the dynamic-programming recurrence for $\operatorname{lcs}(i, j)$.
(c) Apply the recurrence from Part b to the words $u=$ babaab and $v=$ ababba. Show the matrix of subproblem solutions and use it to provide an optimal solution.

LO9. A flow f (2nd number on each edge) has been placed in the network G below.
(a) Draw the residual network G_{f} and use it to determine an augmenting path P. Highlight path P in the network so that it is clearly visible.

(b) Redraw the original network, but with the f flow values being replaced by the $\Delta(f, P)$ flow values.
(c) What one query is needed to the Reachability-oracle in order to determine if $f_{2}=\Delta(f, P)$ is a maximum flow for G ?

