CECS 528, Learning Outcome Assessment 9a, April 14th, Spring 2023, Dr. Ebert

Problems

LO5. Consider Karatsuba's algorithm for multiplying two n-bit binary numbers x and y. Let x_{L} and x_{R} be the leftmost $\lceil n / 2\rceil$ and rightmost $\lfloor n / 2\rfloor$ bits of x respectively. Define y_{L} and y_{R} similarly. Let P_{1} be the result of calling multiply on inputs x_{L} and y_{L}, P_{2} be the result of calling multiply on inputs x_{R} and y_{R}, and P_{3} the result of calling multiply on inputs $x_{L}+x_{R}$ and $y_{L}+y_{R}$. Then return the value $P_{1} \times 2^{2\left\lfloor\frac{n}{2}\right\rfloor}+\left(P_{3}-P_{1}-P_{2}\right) \times 2^{\lfloor n / 2\rfloor}+P_{2}$. Demonstrate Karatsuba's algorithm on $x=90$ and $y=67$. Limit your demonstration to the root level of recursion. In other words, do not go deeper than level 0 .

LO6. Recall the combine step of the Minimum Distance Pair (MDP) algorithm where, for each point P in the δ-strip, there is a $2 \delta \times \delta$ rectangle whose bottom side contains P and is bisected by the vertical line that divides the points into left and right subsets.
(a) Explain why there can be at most 7 other points (from the problem instance) in this rectangle.
(b) Why are those 7 points the only ones for which P 's distance must be computed? Defend your answer.

LO7. Answer the following.
(a) The dynamic-programming algorithm that solves the 0-1 Knapsack optimization problem defines a recurrence for the function $p(i, c)$. In words, what does $p(i, c)$ equal? Hint: do not write the recurrence (see Part b). (5 pts)
(b) Provide the dynamic-programming recurrence for $p(i, c)$. (10 pts)
(c) Apply the recurrence from Part b to a knapsack having capacity $M=11$ and items

item	weight	profit
1	4	30
2	4	15
3	4	50
4	3	10
5	1	30
6	5	40

Show the matrix of subproblem solutions and use it to provide an optimal set of items.
LO8. Answer/Solve the following questions/problems.
(a) The dynamic-programming algorithm that solves the Traveling Salesperson optimization problem (Exercise 30 from the Dynamic Programming Lecture) defines a recurrence for the function $\operatorname{mc}(i, A)$. In words, what does $\operatorname{mc}(i, A)$ equal? Hint: do not write the recurrence (see Part b).
(b) Provide the dynamic-programming recurrence for $\mathrm{mc}(i, A)$.
(c) Apply the recurrence from Part b to the graph below in order to calculate mc $(1,\{2,3,4\})$ Show all the necessary computations.

LO9. A flow f (in red) has been placed in the network G below.
(a) Draw the residual network G_{f} and use it to determine an augmenting path P. Highlight path P in the network so that it is clearly visible.

(b) Redraw the original network, but with the f flow values being replaced by the $\Delta(f, P)$ flow values.
(c) What one query is needed to the Reachability-oracle in order to determine if $f_{2}=\Delta(f, P)$ is a maximum flow for G ?

