CECS 528, Learning Outcome Assessment 8b, April 7th, Spring 2023, Dr. Ebert

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION ALLOWED. Submit solutions to at most 2 LO problems on separate sheets of paper.

Problems

LO4. Use the Master method to determine thge growth of $T(n)$ if it satisfies $T(n)=3 T(n / 2)+n \log n$.
LO5. Recall that the Maximum Subsequence Sum (MSS) problem (Exercise 34) admits a divide-and-conquer algorithm that, on input integer array a, requires computing the maximum of $\operatorname{MSS}_{\text {left }}(a), \operatorname{MSS}_{\text {right }}(a)$, and $\mathrm{MSS}_{\text {mid }}(a)$. If the array is

$$
a=-1,3,-2,5,-5,0,1,4,2,-4,-3
$$

then
(a) Provide $\operatorname{MSS}_{\text {left }}(a), \operatorname{MSS}_{\text {right }}(a)$. Hint: no need to show work!
(b) Provide the two arrays of sums, Sum $_{\text {left }}$ and Sum $_{\text {right }}$ that are used to compute $\operatorname{MSS}_{\text {mid }}(a)$. Explain how to compute $\operatorname{MSS}_{\text {mid }}(a)$ from these two arrays.

LO6. Given that $r=a e+b g, s=a f+b h, t=c e+d g$, and $u=c f+d h$ are the four entries of $A B$, and Strassen's products are obtained from matrices

$$
\begin{gathered}
A_{1}=a, B_{1}=f-h, A_{2}=a+b, B_{2}=h, A_{3}=c+d, B_{3}=e, A_{4}=d, B_{4}=g-e, \\
A_{5}=a+d, B_{5}=e+h, A_{6}=b-d, B_{6}=g+h, A_{7}=a-c, B_{7}=e+f,
\end{gathered}
$$

Compute P_{1}, \ldots, P_{7} and use them to compute r, s, t, and u.
LO7. Answer/Solve the following questions/problems.
(a) The dynamic-programming algorithm that solves the Optimal Binary Search Tree optimization problem defines a recurrence for the function $\operatorname{wac}(i, j)$. In words, what does $\operatorname{wac}(i, j)$ equal? Hint: do not write the recurrence (see Part b).
(b) Provide the dynamic-programming recurrence for $\operatorname{wac}(i, j)$.
(c) Apply the recurrence from Part b to the set of weights 40, 40, 10, 20 (for keys 1-4, respectively). Show the matrix of subproblem solutions and use it to provide an optimal bst.

LO8. Answer/Solve the following questions/problems.
(a) The dynamic-programming algorithm that solves the Traveling Salesperson optimization problem (Exercise 30 from the Dynamic Programming Lecture) defines a recurrence for the function $\operatorname{mc}(i, A)$. In words, what does $\operatorname{mc}(i, A)$ equal? Hint: do not write the recurrence (see Part b).
(b) Provide the dynamic-programming recurrence for $\operatorname{mc}(i, A)$.
(c) Apply the recurrence from Part b to the graph below. Show all the necessary computations.

