CECS 528, Learning Outcome Assessment 8a, April 7th, Spring 2023, Dr. Ebert

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION ALLOWED. Submit solutions to at most 2 LO problems on separate sheets of paper.

Problems

LO4. Use the Subsitution method to prove that $T(n)=T(n / 3)+T(2 n / 3)+n$ implies that $T(n)=$ $\Omega(n \log n)$.

LO5. At the top level of recursion for the Median-of-Five Find Statistic algorithm, with

$$
a=83,63,38,65,4,60,7,69,32,67,36,91,82,21,24,33,72,2,62,47,52,71
$$

and $k=11$ as inputs,
(a) What number will be chosen as the pivot for the partitioning step? Show work.
(b) At the next level (1) of recursion, which array will be examined: $a_{\text {left }}$ or $a_{\text {right }}$? Explain.

LO6. Recall the combine step of the Minimum Distance Pair (MDP) algorithm where, for each point P in the δ-strip, there is a $2 \delta \times \delta$ rectangle whose base contains P and is bisected by the dividing line O (see below).

(a) Explain why there can be at most 7 other points (from the problem instance) in this rectangle.
(b) Why are those 7 points the only ones for which P 's distance must be computed?

LO7. Answer/Solve the following questions/problems.
(a) The dynamic-programming algorithm that solves the Edit Distance optimization problem defines a recurrence for the function $\mathrm{d}(i, j)$. In words, what does $\mathrm{d}(i, j)$ equal? Hint: do not write the recurrence (see Part b).
(b) Provide the dynamic-programming recurrence for $\mathrm{d}(i, j)$.
(c) Apply the recurrence from Part b to the words $u=$ aabbab and $v=$ bababa. Show the matrix of subproblem solutions and use it to provide an optimal sequence of edits.

LO8. Answer/Solve the following questions/problems.
(a) The dynamic-programming algorithm that solves the Matrix-Chain Multiplication optimization problem defines a recurrence for the function $\mathrm{mc}(i, j)$. In words, what does $\mathrm{mc}(i, j)$ equal? Hint: do not write the recurrence (see Part b).
(b) Provide the dynamic-programming recurrence for $\operatorname{mc}(i, j)$.
(c) Apply the recurrence from Part b to the dimension sequence 2,5,5,1,4. Show the matrix of subproblem solutions and use it to provide an optimal parenthesization.

