CECS 528, Learning Outcome Assessment 7b, March 17th, Spring 2023, Dr. Ebert

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMU-NICATION ALLOWED. Submit solutions to at most 2 LO problems on separate sheets of paper.

Problems

- LO3. Answer the following with regards to a correctness-proof outline for the Fractional Knapsack algorithm.
 - (a) Assume x_1, x_2, \ldots, x_n is an ordering of the items in *decreasing* order of profit density (i.e. profit per unit weight). Let f_i denote the fraction of item *i* that the FK-algorithm adds to the knapsack. Which of the following is a possible sequence for f_1, f_2, f_3, f_4, f_5 ?
 - i. 1,1,0.5,0.3
 - ii. 1,1,0.4
 - iii. 0,0,0.3,1,1
 - iv. 0.25,1,1
 - (b) Let f'_1, f'_2, \ldots, f'_n be a sequence of fractions that optimizes total profit, and assume that $f_i = f'_i$, for all i < k, but $f_k \neq f'_k$. Explain why, in this case, it must be true that $f'_k < f_k$. Hint: in relation to the FKA algorithm, what is the contradiction in case the opposite was true?
 - (c) For the scenario described in part b, if $f_i = f'_i$, for all i < k, but $f_k \neq f'_k$, then what is the relationship between d_k the profit density of x_k , and d_{k+1} , the profit density of x_{k+1} ? **Explain.**
- LO4. Provide an example of a uniform divide-and-conquer recurrence for an integer function T(n) that forces $T(n) = \Theta(n^3 \log n)$. Justify your answer.
- LO5. When applying the linear-time Merge algorithm used by Mergesort to the two sorted arrays a = (3, 7, 11, 15, 17) and b = (1, 2, 4, 8, 16), list each pair of numbers that must be compared. Hint: (3, 1) is the first pair. In general, if a and b both have size n, then how many pairs of numbers must be compared?

Solution. The pairs are (3, 1), (3, 2), (3, 4), (7, 4), (7, 8), (11, 8), (11, 16), (15, 16), and (17, 16). In general, there will be 2n - 1 comparisons, when merging two arrays, each with size n.

LO6. Recall that the find_statistic algorithm makes use of Quicksort's partitioning algorithm and uses a pivot that is guaranteed to have at least

$$3(\lfloor \frac{1}{2} \lceil \frac{n}{5} \rceil \rfloor - 2) \ge 3(\frac{1}{2} \cdot \frac{n}{5} - 3) = \frac{3n}{10} - 9 \ge n/4$$

members of a on both its left and right sides, assuming $n \ge 200$.

(a) Rewrite all three inequalities/equalities with updated constants, assuming that the algorithm now uses groups of 11 instead of groups of 5. Also, provide a valid replacement for the inequality n ≥ 200. Show all work.
Solution.

 $6(\lfloor \frac{1}{2} \lceil \frac{n}{11} \rceil \rfloor - 2) \ge 6(\frac{1}{2} \cdot \frac{n}{11} - 3) = \frac{6n}{22} - 18 \ge n/4$

which is true iff $n \ge 792$.

(b) Give the rationale for how you decided to replace the 3 on the left side of the very first inequality.

Solution. In each group of 11 there are 6 (5 plus the median of the group) members who are \leq the pivot (median of medians) and 6 that are \geq the pivot.

- LO7. Solve the following problems.
 - (a) The dynamic-programming algorithm that solves the Edit Distance optimization problem defines a recurrence for the function d(i, j). In words, what does d(i, j) equal? Hint: do not write the recurrence (see Part b).
 - (b) Provide the dynamic-programming recurrence for d(i, j).
 - (c) Apply the recurrence from Part b to the words u = aabbab and v = bababa. Show the matrix of subproblem solutions and use it to provide an optimal solution.