CECS 528, Learning Outcome Assessment 7b, March 17th, Spring 2023, Dr. Ebert

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION ALLOWED. Submit solutions to at most 2 LO problems on separate sheets of paper.

Problems

LO3. Answer the following with regards to a correctness-proof outline for the Fractional Knapsack algorithm.
(a) Assume $x_{1}, x_{2}, \ldots, x_{n}$ is an ordering of the items in decreasing order of profit density (i.e. profit per unit weight). Let f_{i} denote the fraction of item i that the FK-algorithm adds to the knapsack. Which of the following is a possible sequence for $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}$?
i. $1,1,0.5,0.3$
ii. $1,1,0.4$
iii. $0,0,0.3,1,1$
iv. $0.25,1,1$
(b) Let $f_{1}^{\prime}, f_{2}^{\prime}, \ldots, f_{n}^{\prime}$ be a sequence of fractions that optimizes total profit, and assume that $f_{i}=f_{i}^{\prime}$, for all $i<k$, but $f_{k} \neq f_{k}^{\prime}$. Explain why, in this case, it must be true that $f_{k}^{\prime}<f_{k}$. Hint: in relation to the FKA algorithm, what is the contradiction in case the opposite was true?
(c) For the scenario described in part b , if $f_{i}=f_{i}^{\prime}$, for all $i<k$, but $f_{k} \neq f_{k}^{\prime}$, then what is the relationship between d_{k} the profit density of x_{k}, and d_{k+1}, the profit density of x_{k+1} ? Explain.

LO4. Provide an example of a uniform divide-and-conquer recurrence for an integer function $T(n)$ that forces $T(n)=\Theta\left(n^{3} \log n\right)$. Justify your answer.

LO5. When applying the linear-time Merge algorithm used by Mergesort to the two sorted arrays $a=(3,7,11,15,17)$ and $b=(1,2,4,8,16)$, list each pair of numbers that must be compared. Hint: $(3,1)$ is the first pair. In general, if a and b both have size n, then how many pairs of numbers must be compared?

Solution. The pairs are $(3,1),(3,2),(3,4),(7,4),(7,8),(11,8),(11,16),(15,16)$, and $(17,16)$. In general, there will be $2 n-1$ comparisons, when merging two arrays, each with size n.

LO6. Recall that the find_statistic algorithm makes use of Quicksort's partitioning algorithm and uses a pivot that is guaranteed to have at least

$$
3\left(\left\lfloor\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rfloor-2\right) \geq 3\left(\frac{1}{2} \cdot \frac{n}{5}-3\right)=\frac{3 n}{10}-9 \geq n / 4
$$

members of a on both its left and right sides, assuming $n \geq 200$.
(a) Rewrite all three inequalities/equalities with updated constants, assuming that the algorithm now uses groups of 11 instead of groups of 5 . Also, provide a valid replacement for the inequality $n \geq 200$. Show all work.

Solution.

$$
6\left(\left\lfloor\frac{1}{2}\left\lceil\frac{n}{11}\right\rceil\right\rfloor-2\right) \geq 6\left(\frac{1}{2} \cdot \frac{n}{11}-3\right)=\frac{6 n}{22}-18 \geq n / 4
$$

which is true iff $n \geq 792$.
(b) Give the rationale for how you decided to replace the 3 on the left side of the very first inequality.
Solution. In each group of 11 there are 6 (5 plus the median of the group) members who are \leq the pivot (median of medians) and 6 that are \geq the pivot.

LO7. Solve the following problems.
(a) The dynamic-programming algorithm that solves the Edit Distance optimization problem defines a recurrence for the function $d(i, j)$. In words, what does $d(i, j)$ equal? Hint: do not write the recurrence (see Part b).
(b) Provide the dynamic-programming recurrence for $d(i, j)$.
(c) Apply the recurrence from Part b to the words $u=$ aabbab and $v=$ bababa. Show the matrix of subproblem solutions and use it to provide an optimal solution.

