CECS 528, Learning Outcome Assessment 7a, March 17th, Spring 2023, Dr. Ebert

Abstract

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION ALLOWED. Submit solutions to at most 2 LO problems on separate sheets of paper.

Problems

LO3. The following pertains to a correctness-proof outline for the Unit Task Scheduling (UTS) algorithm. Let $S=\left(a_{1}, t_{1}\right), \ldots,\left(a_{m}, t_{m}\right)$ represent the tasks that were selected by the algorithm for scheduling, where a_{i} is the task, and t_{i} is the time that it is scheduled to be completed, $i=1, \ldots, m$. Moreover, assume that these tasks are ordered in the same order for which they appear in the sorted order. Let $S_{\text {Opt }}$ be an optimal schedule which also consists of task-schedule-time pairs. Let k be the first integer for which $\left(a_{1}, t_{1}\right), \ldots,\left(a_{k-1}, t_{k-1}\right)$ are in $S_{\text {opt }}$, but $\left(a_{k}, t_{k}\right) \notin S_{\text {opt }}$ because a_{k} was not scheduled by $S_{\text {opt }}$.
(a) How do we know that $S_{\text {opt }}$ must have a task a scheduled at t_{k} ? Hint: what contradiction arises in case time t_{k} is not being utilized?
(b) What contradiction arises when we assume that a comes before a_{k} in the UTS ordering? Hint: there are two cases.

LO4. Given $T_{1}(n)=16 T_{1}(n / 4)+n^{2}$, and $T_{2}(n)=a T_{2}(n / 3)+n^{2}$ what is the greatest possible value that a can assume, and still have $T_{2}(n)=o\left(T_{1}(n)\right)$? Show work and explain.

Solution. $a=8$, since $a=9$ gives $T_{2}(n)$ the same $\Theta\left(n^{2} \log n\right)$ growth as $T_{1}(n)$.
LO5. When applying the linear-time Merge algorithm used by Mergesort to the two sorted arrays $a=(1,3,10,13,20)$ and $b=(2,4,6,16,19)$, list each pair of numbers that must be compared. Hint: $(1,2)$ is the first pair. In general, if a and b both have size n, then how many pairs of numbers must be compared?
Solution. The pairs are $(1,2),(3,2),(3,4),(10,4),(10,6),(10,16),(13,16),(20,16),(20,19)$. In general, there will be $2 n-1$ comparisons, when merging two arrays, each with size n.

LO6. Consider the following algorithm called Karatsuba's algorithm for multiplying two n-bit binary numbers x and y. Let x_{L} and x_{R} be the leftmost $\lceil n / 2\rceil$ and rightmost $\lfloor n / 2\rfloor$ bits of x respectively. Define y_{L} and y_{R} similarly. Let P_{1} be the result of calling multiply on inputs x_{L} and y_{L}, P_{2} be the result of calling multiply on inputs x_{R} and y_{R}, and P_{3} the result of calling multiply on inputs $x_{L}+x_{R}$ and $y_{L}+y_{R}$. Then return the value $P_{1} \times 2^{2\left\lfloor\frac{n}{2}\right\rfloor}+\left(P_{3}-\right.$ $\left.P_{1}-P_{2}\right) \times 2^{\lfloor n / 2\rfloor}+P_{2}$. Show that the algorithm always works by proving in general that $x y=P_{1} \times 2^{n}+\left(P_{3}-P_{1}-P_{2}\right) \times 2^{n / 2}+P_{2}$ for arbitrary x and y. Hint: to avoid floors and ceilings, you may assume that x and y both have even lengths.

LO7. Solve the following problems.
(a) The dynamic-programming algorithm that solves the Longest Common Subsequence (LCS) optimization problem defines a recurrence for the function $\operatorname{lcs}(i, j)$. In words, what does $\operatorname{lcs}(i, j)$ equal? Hint: do not write the recurrence (see Part b).
(b) Provide the dynamic-programming recurrence for $\operatorname{lcs}(i, j)$.
(c) Apply the recurrence from Part b to the words $u=$ aabbab and $v=$ bababa. Show the matrix of subproblem solutions and use it to provide an optimal solution.

